精英家教网 > 初中数学 > 题目详情

如图,直线与x轴、y轴分别交于B、A两点,且A、B两点的坐标分别为A(0,6)、B(8,0)。现将线段AB绕着点B按顺时针方向旋转90o,得到线段BC。
(1)求直线的函数解析式
(2)求点C的坐标及△OBC的面积
(3)坐标轴上的是否存在一点P,使得△ABP的面积与△OBC的面积相等?若存在,请直接写出点P的坐标;若不存在,请说明理由。

(1)
(2)C点坐标为(14,8);32
(3)当P点在B点右边时,P点坐标为(,0),当P点在B点左边时,P点坐标为(,0).

解析试题分析:(1)先设直线方程为y=kx+b,然后把A、B两点坐标代入求出直线的解析式;
(2)利用线段AB绕着点B按顺时针方向旋转90o得到线段BC,得出BC的斜率及BC的长,然后根据两点距离公式求出C点的坐标,再根据三角形的面积公式求△OBC的面积;
(3)P点坐标分在x轴、y轴两种情况进行讨论.
考点:一次函数解析式;勾股定理;三角形面积公式.
点评:利用数形结合求解是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直线与x轴、y轴分别交于A、B两点.
(1)将直线AB绕原点O沿逆时针方向旋转90°得到直线A1B1
请在《答题卡》所给的图中画出直线A1B1,此时直线AB与A1B1的位置关系为
 
(填“平行”或“垂直”);
(2)设(1)中的直线AB的函数表达式为y1=k1x+b1,直线A1B1的函数表达式为y2=k2x+b2,则k1•k2=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线与x轴、y轴交于A、B两点,且OA=OB=1,点P是反比例函数y=
1
2x
图象在第一象限的分支上的任意一点,P点坐标为(a,b),由点P分别向x轴,y轴作垂线PM、PN,垂足分别为M、N;PM、PN分别与直线交于点E,点F.
(1)设交点E、F都在线段AB上,分别求出点E、点F的坐标;(用含a的代数式表示)
(2)△AOF与△BOE是否一定相似?如果一定相似,请予以证明;如果不一定相似或一定不相似,请简短说明理由;
(3)当点P在曲线上移动时,△OEF随之变动,指出在△OEF的三个内角中,大小始终保持不变的那个角和它的大小,并证明你的结论;
(4)在双曲线y=
1
2x
上是否存在点P,使点P到直线AB的距离最短的点,若存在,请求出点P的坐标及最短距离;若不存在,说明理由
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

3、如图,直线与y轴的交点是(0,-3),则当x<0时,(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线与x轴、y轴分别交于A、B两点.
(1)将直线AB绕原点O沿逆时针方向旋转90°得到直线A1B1.请在《答题卡》所给的图中画出直线A1B1,此时直线AB与A1B1的位置关系为
垂直
垂直
(填“平行”或“垂直”)
(2)设(1)中的直线AB的函数表达式为y1=k1x+b1,直线A1B1的函数表达式为y2=k2x+b2,则k1•k2=
-1
-1

查看答案和解析>>

科目:初中数学 来源:2011届宁夏银川市初三上学期期末数学卷 题型:解答题

如图①,直线与x轴、y轴分别交于B、C两点,点A在x轴负半轴上,且,抛物线经过A、B、C三点,D为线段AB中点,点P(m,n)是该抛物线上的一个动点(其中m>0,n<0),连接DP交BC于点E.

(1)写出A、B、C三点的坐标,并求抛物线的解析式;(5分)
(2) 当△BDE是等腰三角形时,直接写出此时点E的坐标;(3分)
(3)连结PC、PB,△PBC是否有最大面积?若有,求出△PBC的最大面积和此时P点的坐标;若没有,请说明理由。(3分)

查看答案和解析>>

同步练习册答案