精英家教网 > 初中数学 > 题目详情
在半径为4的⊙O中,点C是以AB为直径的半圆的中点,OD⊥AC,垂足为D,点E是射线AB上的任意一点,DF∥AB,DF与CE相交于点F,设EF=x,DF=y.
(1)如图1,当点E在射线OB上时,求y关于x的函数解析式,并写出函数定义域;
(2)如图2,当点F在⊙O上时,求线段DF的长;
(3)如果以点E为圆心、EF为半径的圆与⊙O相切,求线段DF的长.
精英家教网精英家教网
分析:(1)连接OC,由OD⊥AC得D是AC的中点,则F也是CE的中点,CE=2x,OC=4,DF=y,OE=2y-4,在Rt△COE中,由勾股定理得出y与x之间的关系.
(2)连接OC、OF,由EF=
1
2
CE=OF=4求得CE,再求得OE、AE,则DF即可求出.
(3)此题需分两种情况:当⊙E与⊙O外切于点B时、当⊙E与⊙O内切于点B时及当⊙E与⊙O内切于点A时分别求出DF的值.
解答:解:(1)连接OC.
精英家教网
∵在⊙O中,AC是⊙O的弦,OD⊥AC,
∴CD=AD.
∵DF∥AB,
∴CF=EF.
∴DF=
1
2
AE=
1
2
(AO+OE).
∵点C是以AB为直径的半圆的中点,
∴CO⊥AB.
∵EF=x,AO=CO=4,∴CE=2x,OE=
CE2-OC2
=
4x2-16
=2
x2-4

∴y=
1
2
(4+2
x2-4
)=2+
x2-4
.定义域为x≥2;

(2)当点F在⊙O上时,连接OC、OF.
精英家教网
EF=
1
2
CE=OF=4,
∴OC=OB=
1
2
AB=4.
∴DF=2+
42-4
=2+2
3


(3)当⊙E与⊙O外切于点B时,BE=FE.
∵CE2-OE2=CO2
∴(2x)2-(x+4)2=42,3x2-8x-32=0,
∴x1=
4+4
7
3
,x2=
4-4
7
3
(舍去).
∴DF=
1
2
(AB+BE)=
1
2
(8+
4+4
7
3
)=
14+2
7
3

当⊙E与⊙O内切于点B时,BE=FE.
∵CE2-OE2=CO2
∴(2x)2-(4-x)2=42,3x2+8x-32=0.
∴x1=
-4+4
7
3
,x2=
-4-4
7
3
(舍去).
∴DF=
1
2
(AB-BE)=
1
2
(8-
-4+4
7
3
)=
14-2
7
3

当⊙E与⊙O内切于点A时,AE=FE.∵CE2-OE2=CO2
∴(2x)2-(4-x)2=42,3x2+8x-32=0.
∴x1=
-4+4
7
3
,x2=
-4-4
7
3
(舍去).
∴DF=
1
2
AE=
2
7
-2
3

精英家教网
点评:此题考查了切线的性质、勾股形里及中位线的性质等内容,综合性强,难度大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在半径为5的圆中,弧所对的圆心角为90°,则弧所对的弦长是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

9、在半径为9cm的圆中,60°的圆心角所对的弦长为
9
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

在半径为1的圆中,弦AB、AC分别
3
2
,则∠BAC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在半径为l的⊙O中,弦AB,AC分别是
3
2
,则∠BAC的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在半径为2的圆中,已知弦的长为2
3
,则这条弦与圆心的距离为
1
1

查看答案和解析>>

同步练习册答案