抛物线
交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3),
(1)求二次函数
的解析式;
(2)在抛物线对称轴上是否存在一点P,使点P到B、C两点距离之差最大?若存在,求出P点坐标;若不存在,请说明理由;
(3)平行于x轴的一条直线交抛物线于M,N两点,若以MN为直径的圆恰好与x轴相切,求此圆的半径.
![]()
解:(1)将C(0,-3)代入
,得 c=3.
将c=3,B(3,0)代入
,
得
.……….(1)
∵
是对称轴,
∴
(2)
将(2)代入(1)得:
,
.
所以,二次函数得解析式是
.
(2)AC与对称轴的交点P即为到B、C的距离之差最大的点.
∵C点的坐标为(0,-3),A点的坐标为(-1,0),
∴ 直线AC的解析式是
,又对称轴为
,
∴ 点P的坐标(1,-6).
(3)设
,所求圆的半径为r,则
,
∵ 对称轴为
, ∴
.
由(1)、(2)得:
.……….(3)
将
代入解析式
,
得
,………….(4)
整理得:
.
由于
当
时,
,
解得,
,
(舍去),
当
时,
,
解得,
,
(舍去).
所以圆的半径是
或
.
科目:初中数学 来源: 题型:
| 1 | 15 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com