精英家教网 > 初中数学 > 题目详情
如图,矩形纸片ABCD,点E是AB上一点,且BE:EA=5:3,EC=10
5
,把△BCE沿折痕EC向上翻折,若点B恰好落在AD边上,设这个点为F,则
(1)AB=
16
16
,BC=
20
20

(2)若⊙O内切于以F、E、B、C为顶点的四边形,则⊙O的面积=
400
9
π
400
9
π
分析:(1)由四边形ABCD为矩形,得到四个角为直角,对边相等,根据BE:EA=5:3,设BE=5k,则EA=3k,同时由DC=BC=AE+EB表示出DC,由折叠可知EF=EB=5k,在直角三角形AEF中,根据勾股定理得到AF=4k,同时得到∠EFC=∠B=90°,根据平角的定义得到一对角互余,在直角三角形AEF中得到一对锐角互余,根据同角的余角相等可得出∠DFC=∠AEF,又∵∠A=∠D=90°,利用两对对应角相等的三角形相似可得出三角形AEF与三角形CFD相似,根据相似得比例,将表示出AF,AE,及DC代入,表示出FD,由AF+FD表示出AD,即为BC的长,在直角三角形EBC中,表示出的EB,BC,以及EC的长,利用勾股定理列出关于k的方程,求出方程的解得到k的值,进而确定出AB及BC的长;
(2)连接OM,ON,由圆O为四边形的内切圆,得到AB与圆O相切,BC与圆O相切,根据三个角为直角的四边形为矩形可得出BMON为矩形,再由OM=ON,得到OMBN为正方形,设圆的半径为r,则有OM=BM=r,由OM与BC垂直,EB与BC垂直得到一对直角相等,再由一对公共角相等,得到三角形OMC与三角形EBC相似,根据相似得比例,将各自的值代入得到关于r的方程,求出方程的解得到r的值,进而利用圆的面积公式求出圆O的面积.
解答:解:(1)∵矩形ABCD,
∴∠A=∠B=∠C=∠D=90°,AB=DC,AD=BC,
由BE:EA=5:3,设BE=5k,则EA=3k,
由折叠可知:EF=BE=5k,∠EFC=∠B=90°,
在Rt△AEF中,AE=3k,EF=5k,
根据勾股定理得:AF=4k,
又∵∠AFE+∠DFC=90°,∠AEF+∠AFE=90°,
∴∠DFC=∠AEF,又∠A=∠D=90°,
∴△AEF∽△DFC,
AE
DF
=
AF
DC
,又AE=3k,AF=4k,DC=AB=AE+EB=8k,
∴DF=6k,
∴BC=AD=AF+FD=4k+6k=10k,
在Rt△EBC中,EC=10
5
,BC=10k,EB=5k,
根据勾股定理得:EC2=EB2+BC2,即500=25k2+100k2
解得:k=2或k=-2(舍去),
则AB=8k=16,BC=10k=20;

(2)连接OM,ON,如图所示:

∵圆O为四边形BEFC的内切圆,
∴AB与圆O相切于点N,BC与圆O相切于M点,
∴∠ONB=∠OMB=90°,又∠B=90°,
∴四边形OMBN为矩形,又OM=ON,
∴四边形OMBN为正方形,设圆的半径为r,
∴OM=BM=r,又BC=20,
∴MC=BC-BM=20-r,
又∵∠OMC=∠B=90°,且∠OCM=∠ECB,
∴△OMC∽△EBC,
OM
EB
=
MC
BC
,即
r
10
=
20-r
20

整理得:20r=200-10r,解得:r=
20
3

则圆O的面积S=πr2=
400
9
π.
故答案为:(1)16;20;(2)
400
9
π
点评:此题考查了切线的性质,矩形的性质,正方形的判定与性质,折叠的性质,勾股定理,以及相似三角形的判定与性质,熟练掌握切线的性质是解本题的关键,同时本题的知识综合性较强,要求学生把所学的知识能融汇贯穿,灵活运用,注意平时常添的辅助线的利用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形纸片ABCD中,AB=4,BC=4
3
,将矩形沿对角线AC剪开,解答以下问题:
(1)在△ACD绕点C顺时针旋转60°,△A1CD1是旋转后的新位置(图A),求此AA1的距离;
(2)将△ACD沿对角线AC向下翻折(点A、点C位置不动,△ACD和△ABC落在同一平面内),△ACD2是翻折后的新位置(图B),求此时BD2的距离;
(3)将△ACD沿CB向左平移,设平移的距离为x(0≤x≤4
3
),△A2C1D3是平移后的新位置(图C),若△ABC与△A2C1D3重叠部分的面积为y,求y关于x的函数关系式.
精英家教网精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,矩形纸片ABCD中AB=6cm,BC=10cm,小明同学先折出矩形纸片ABCD的对角线AC,再分别精英家教网把△ABC、△ADC沿对角线AC翻折交AD、BC于点F、E.
(1)判断小明所折出的四边形AECF的形状,并说明理由;
(2)求四边形AECF的面积.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(37):2.7 最大面积是多少(解析版) 题型:解答题

如图,矩形纸片ABCD中,AB=4,BC=4,将矩形沿对角线AC剪开,解答以下问题:
(1)在△ACD绕点C顺时针旋转60°,△A1CD1是旋转后的新位置(图A),求此AA1的距离;
(2)将△ACD沿对角线AC向下翻折(点A、点C位置不动,△ACD和△ABC落在同一平面内),△ACD2是翻折后的新位置(图B),求此时BD2的距离;
(3)将△ACD沿CB向左平移,设平移的距离为x(0≤x≤4),△A2C1D3是平移后的新位置(图C),若△ABC与△A2C1D3重叠部分的面积为y,求y关于x的函数关系式.


查看答案和解析>>

科目:初中数学 来源:第25章《图形的变换》中考题集(30):25.3 轴对称变换(解析版) 题型:解答题

如图,矩形纸片ABCD中,AB=4,BC=4,将矩形沿对角线AC剪开,解答以下问题:
(1)在△ACD绕点C顺时针旋转60°,△A1CD1是旋转后的新位置(图A),求此AA1的距离;
(2)将△ACD沿对角线AC向下翻折(点A、点C位置不动,△ACD和△ABC落在同一平面内),△ACD2是翻折后的新位置(图B),求此时BD2的距离;
(3)将△ACD沿CB向左平移,设平移的距离为x(0≤x≤4),△A2C1D3是平移后的新位置(图C),若△ABC与△A2C1D3重叠部分的面积为y,求y关于x的函数关系式.


查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2007•益阳)如图,矩形纸片ABCD中,AB=4,BC=4,将矩形沿对角线AC剪开,解答以下问题:
(1)在△ACD绕点C顺时针旋转60°,△A1CD1是旋转后的新位置(图A),求此AA1的距离;
(2)将△ACD沿对角线AC向下翻折(点A、点C位置不动,△ACD和△ABC落在同一平面内),△ACD2是翻折后的新位置(图B),求此时BD2的距离;
(3)将△ACD沿CB向左平移,设平移的距离为x(0≤x≤4),△A2C1D3是平移后的新位置(图C),若△ABC与△A2C1D3重叠部分的面积为y,求y关于x的函数关系式.


查看答案和解析>>

同步练习册答案