精英家教网 > 初中数学 > 题目详情
17、把矩形纸片ABCD(如图①)沿对角线DB剪开,得到两个三角形,将其中的△DCB沿对角线平移到△EC′F的位置(如图②).
求证:△ADE≌△C′FB.
分析:先根据平移及矩形的性质,得到AD=CB=C′F,DE=BF,C′F∥AD∥BC,再利用SAS判定△ADE≌△C′FB.
解答:证明:∵四边形ABCD是矩形,△EC′F由△DCB平移得到,
∴AD=CB=C′F,DE=BF,C′F∥AD∥BC,
∴∠D=∠F,
∴△ADE≌△C′FB.
点评:本题考查了平移、矩形、平行线的性质及全等三角形的判定,难度中等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A处,则AE、AB、BF之间的关系是
AE2+AB2=BF2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知矩形纸片ABCD中,AB=3,BC=6,E在矩形ABCD的边AD上,点F在矩形ABCD的边BC上,且BF=5,把矩形纸片ABCD沿EF折叠,BF的对应线段FB′交边AD于点G.

(1)判断△EFG是何种特殊三角形,并证明你的结论.
(2)在折叠过程中,不重叠部分(阴影图形)的周长之和p会发生变化吗?若不变化,请求出p的值;若变化,请说明理由.
(3)当△EFG是锐角三角形时,求AE的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•自贡)如图,把矩形纸片ABCD沿EF折叠,使点B落在AD边上的点B′处,点A落在A′处.
(1)求证:B′E=BF;
(2)设AE=a,AB=b,BF=c,试猜想a、b、c之间有何等量关系,并给予说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,把矩形纸片ABCD沿折叠,使点B落在边AD上的点B′处,点A落在点A′处;
( I)求证:B′E=BF
( II)设AE=a,AB=b,BF=c,求证:a+b>c.

查看答案和解析>>

同步练习册答案