精英家教网 > 初中数学 > 题目详情

如图,中,,将沿着一条直线折叠后,使点与点重合(图②).

(1)在图①中画出折痕所在的直线.设直线分别相交于点,连结.(尺规作图,保留作图痕迹,不要求写画法)(2分)

(2)请你找出完成问题(1)后所得到的图形中的等腰三角形.(用字母表示,不要求证明)(2分)

 

【答案】

(1)

(2)为等腰三角形.

【解析】

试题分析:(1)作出AC的垂直平分线即可;如图所示:   

(2)DE垂直平分AC,∴AD=DC那么△ADC是等腰三角形;易知∠A=∠ACD,∴∠B=∠DCB,∴DC=DB,∴△DCB是等腰三角形.为等腰三角形. 2分

考点:折叠、等腰三角形

点评:本题考查折叠、等腰三角形,本题的关键是掌握折叠的概念和性质、熟悉等腰三角形的性质,会判定一个三角形是等腰三角形

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•山西)问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.
探究展示:小宇同学展示出如下正确的解法:
解:OM=ON,证明如下:
连接CO,则CO是AB边上中线,
∵CA=CB,∴CO是∠ACB的角平分线.(依据1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)
反思交流:
(1)上述证明过程中的“依据1”和“依据2”分别是指:
依据1:
等腰三角形的三线合一(等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合)
等腰三角形的三线合一(等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合)

依据2:
角平分线上的点到角的两边的距离相等
角平分线上的点到角的两边的距离相等

(2)你有与小宇不同的思考方法吗?请写出你的证明过程.
拓展延伸:
(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(山西卷)数学(带解析) 题型:解答题

问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.
探究展示:小宇同学展示出如下正确的解法:
解:OM=ON,证明如下:
连接CO,则CO是AB边上中线,
∵CA=CB,∴CO是∠ACB的角平分线.(依据1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)
反思交流:
(1)上述证明过程中的“依据1”和“依据2”分别是指:
依据1:                                                                                   
依据2:                                     
(2)你有与小宇不同的思考方法吗?请写出你的证明过程.
拓展延伸:
(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年云南省玉溪市洛河民族中学八年级上期末考试数学卷(带解析) 题型:解答题

如图,中,,将沿着一条直线折叠后,使点与点重合(图②).

(1)在图①中画出折痕所在的直线.设直线分别相交于点,连结.(尺规作图,保留作图痕迹,不要求写画法)(2分)
(2)请你找出完成问题(1)后所得到的图形中的等腰三角形.(用字母表示,不要求证明)(2分)

查看答案和解析>>

科目:初中数学 来源:山西省中考真题 题型:解答题

问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由
探究展示:小宇同学展示出如下正确的解法:
解:OM=ON,
证明如下:连接CO,则CO是AB边上中线,
∵CA=CB,
∴CO是∠ACB的角平分线(依据1)
∵OM⊥AC,ON⊥BC,
∴OM=ON(依据2)反思交流:
(1)上述证明过程中的“依据1”和“依据2”分别是指:
依据1:                                                                                    
依据2:                                                                                     
(2)你有与小宇不同的思考方法吗?请写出你的证明过程.
拓展延伸:
(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.

查看答案和解析>>

同步练习册答案