精英家教网 > 初中数学 > 题目详情

如图,△ABC的高BD、CE相交于O.
(1)写出图中的两对相似三角形,并写出相应的对应边的比;
(2)连接ED,△ADE与△ABC相似吗?若相似,给出证明.

解:(1)图中的两对相似三角形为:△ABD∽△ACE,△EOB∽△DOC;相应的对应边的比分别为:
理由:∵BD、CE是△ABC的高,
∴∠AEC=ADB=90°,
∵∠A=∠A,
∴△ABD∽△ACE,

∵BD、CE是△ABC的高,
∴∠BEO=∠CDO=90°,
∵∠EOB=∠DOC,
∴△EOB∽△DOC,


(2)相似.
证明:∵△ABD∽△ACE,


∵∠A是公共角,
∴△ADE∽△ABC.
分析:(1)由△ABC的高BD、CE相交于O,易得∠AEC=ADB=90°,∠BEO=∠CDO=90°,又由∠A是公共角,∠EOB=∠DOC,根据有两组角对应相等的两个三角形相似,即可判定:△ABD∽△ACE,△EOB∽△DOC,然后根据相似三角形的对应边成比例,即可求得相应的对应边的比;
(2)由△ABD∽△ACE,根据相似三角形的对应边成比例,即可得,又由∠A是公共角,根据两组对应边的比相等且夹角对应相等的两个三角形相似,即可判定△ADE与△ABC相似.
点评:此题考查了相似三角形的判定与性质.此题难度适中,解题的关键是掌握有两组角对应相等的两个三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似定理的应用,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC的高AD、BE、CF相交于点I,△BIC的BI边上的高是
CE

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,△ABC的高BD、CE相交于点O,且OB=OC,AB与AC相等吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,△ABC的高AD、BE相交于点O,则∠C与∠BOD的关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的高CF、BG相交于点H,分别延长CF、BG与△ABC的外接圆交于D、E两点,则下列结论:①AD=AE;②AH=AE;③若DE为△ABC的外接圆的直径,则BC=AE.其中正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的高AD=4,BC=8,四边形MNPQ是△ABC中任意一个内接矩形
(1)设MN=x,MQ=y,求y关于x的函数解析式;
(2)设MN=x,矩形MNPQ的面积为y,求y关于x的函数关系式,并求出当MN为多大时,矩形MNPQ面积y有最大值,最大值为多少?

查看答案和解析>>

同步练习册答案