精英家教网 > 初中数学 > 题目详情

园林小路,曲径通幽.如图所示,白色正方形石板和青、红两色的三角形石板铺成.问:内圈三角形石板的总数量多,还是外圈三角形石板的总数量多?请说明理由.

答案:
解析:

  解析:同学们仔细观察图形的结构:容易看出,两个相邻的正方形只有一个顶点重合,它们之间夹着一个外圈的三角形石板与一个内圈的三角形石板.因此内、外圈三角形总个数是相等的.

  解:将△ABC绕A点顺时针旋转90°到△AED的位置.则由旋转的特征知道AD=AC,∠BAC=∠EAD.又由正方形的性质可知AF=AC,即得AD=AF,又由∠EAF+∠BAC=180°,可知∠FAD+∠EAF=180°,即D、A、F三点在同一条直线上,此时△EDA与△EAF的面积相等.又由于内、外圈三角形石板的个数相等,则内圈三角形石板与外圆三角形石板的总面积相等.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)如图1,以△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断△ABC与△AEG面积之间的关系,并说明理由.
(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,以△ABC的边AB、AC为边分别向外作等腰直角△ABD和等腰直角△ACE,连接CD、BE、DE
(1)证明:△ADC≌△ABE;
(2)试判断△ABC与△ADE面积之间的关系,并说明理由;
(3)园林小路,曲径通幽,如图2所示,小路由白色的正方形大理石和黑色的三角形大理石铺成,已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地
(a+2b)
(a+2b)
平方米.(不用写过程)

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

(1)如图①所示,以△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断△ABC与△AEG面积之间的关系,并说明理由。

                 ①                                  ②
 (2)园林小路,曲径通幽,如图②所示,小路由白色的正方形大理石和黑色的三角形大理石铺成,已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是6平方米,这条小路一共占地多少平方米?

查看答案和解析>>

科目:初中数学 来源:2012-2013学年安徽铜陵第三中学八年级第二次月考数学试题(带解析) 题型:解答题

(1)如图,以△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,试判断△ABC与△AEG面积之间的关系,并说明理由。

(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米?

查看答案和解析>>

科目:初中数学 来源:2012-2013学年安徽铜陵第三中学八年级第二次月考数学试题(解析版) 题型:解答题

(1)如图,以△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,试判断△ABC与△AEG面积之间的关系,并说明理由。

(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米?

 

查看答案和解析>>

同步练习册答案