精英家教网 > 初中数学 > 题目详情
精英家教网如图,点B、C在⊙O上,且∠OBC=60°,则圆周角∠BAC等于(  )
A、60°B、50°C、40°D、30°
分析:由∠OBC=60°,OB=OC,得到△OBC为等边三角形,则∠OBC=60°,根据圆周角定理得∠BAC=
1
2
∠OBC,即可计算出∠BAC.
解答:解:∵∠OBC=60°,
而OB=OC,
∴△OBC为等边三角形,
∴∠OBC=60°,
∴∠BAC=
1
2
∠OBC=
1
2
×60°=30°.
故选D.
点评:本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.也考查了等边三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,点B、C在线段AD上,M是AB的中点,N是CD的中点,若MN=a,BC=b,则AD的长是
2a-b

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A、B在线段MN上,若MA=AB=BN,则称A、B都为线段MN上的三等分点.则角的三等分线可以照此定义.精英家教网
(1)若线段MN=9厘米,E是线段MN上的三等分点,那么线段ME为几厘米?
(2)在∠MON中,射线OA是∠MON的三等分线,OB是∠MOA的三等分线,设∠MOB=x,画出图形,并用含x的代数式表示∠MON.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点E、F在BC上,AB=DC,∠B=∠C,∠A=∠D,
求证:BE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABD和△BEP均为等腰直角△,∠BAD=∠BEP=90゜,点O为BD的中点.
(1)如图,点P、E分别在AB、BD上,求证:AP=
2
OE;
(2)将图1中的△BPE绕B点顺时针旋转45゜,问(1)中的结论是否成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点C、D在线段AB上,且C为AB的一个四等分点,D为AC中点,若BC=2,则BD的长为
5
5

查看答案和解析>>

同步练习册答案