精英家教网 > 初中数学 > 题目详情

如图,△ABC中,AD平分∠BAC,DE∥AC交AB于E,若AB=6,AC=4,求DE的长.

解:∵AD平分∠BAC,
∴∠BAD=∠DAC,
∵DE∥AC交AB于E,
∴∠EDA=∠DAC,
∴∠BAD=∠EDA,
∴AE=DE,
设DE=x,
则DE=AE=x,
∴BE=AB-x=6-x,
∵DE∥AC,
∴△BED∽BAC,
∴BE:AB=DE:AC,
即6-x:6=x:4,
解得:x=2.4.
答:DE的长是2.4.
分析:设DE=x,利用角平分线的性质和平行线的性质可证明三角形AED是等腰三角形,所以DE=AE=x,所以BE=AB-x=6-x,再利用相似三角形的性质得到关于x的比例式求出x的值即可.
点评:本题考查了角平分线的性质、等腰三角形的判定和性质以及相似三角形的判定和性质,解题的关键是设未知数建立方程,在求解方程.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案