【题目】如图,在△ABC中,AB=AC,点D是△ABC内一点,AD=BD,且AD⊥BD,连接CD.过点C作CE⊥BC交AD的延长线于点 E,连接BE.过点D作DF⊥CD交BC于点F.
![]()
(1)若BD=DE=
,CE=
,求BC的长;
(2)若BD=DE,求证:BF=CF.
【答案】(1)BC=2
;(2)证明见解析.
【解析】试题分析:(1)利用勾股定理求出BE的长,进而再次利用勾股定理求出BC的长;
(2)连接AF,首先利用ASA证明出△BDF≌△EDC,得到
,进而得到∠ADF=∠BDC,再次利用SAS证出△ADF≌△BDC,结合题干条件得到AF⊥BC,利用等腰三角形的性质得到结论.
试题解析:(1)∵BD⊥AD,点E在AD的延长线上,
∴
∵
∴
∵BC⊥CE,
∴
∴
(2)连接AF,
![]()
∵CD⊥BD,DF⊥CD,
∴
∴∠BDF=∠CDE,
∵CE⊥BC,
∴
∴∠DBC=∠CED,
在△BDF和△EDC中,
∵
∴△BDF≌△EDC(ASA),
∴DF=CD,
∴
∵∠ADB=∠CDF,
∴∠ADB+∠BDF=∠CDF+∠BDF,
∴∠ADF=∠BDC,
在△ADF和△BDC中,
∵
∴△ADF≌△BDC(SAS),
∴∠AFD=∠BCD,
∴
∴
∴AF⊥BC,
∴AB=AC,
∴BF=CF.
科目:初中数学 来源: 题型:
【题目】已知△ABC内接于⊙O,AC是⊙O的直径,D是
的中点.过点D作CB的垂线,分别交CB、CA延长线于点F、E. ![]()
(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)若CF=6,∠ACB=60°,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,直线
与
轴交于点
,直线
与
轴交于点
,与
相交于点
.
(1)求点
的坐标;
(2)在
轴上一点
,若
,求点
的坐标;
(3)直线
上一点
,平面内一点
,若以
、
、
为顶点的三角形与
全等,求点
的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系
中,以直线
向上的方向为新坐标系
轴的正方向,过点
作一与新
轴垂直的直线,垂足是点
,该直线向上的方向为新
轴的正方向,由此建立新的坐标系
.
(1)新
轴所在直线在
坐标系中的表达式是什么?
(2)点
在
坐标系中坐标是
,在坐标系
中的坐标是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为________.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润
与投资量
成正比例关系,如图(1)所示;种植花卉的利润
与投资量
成二次函数关系,如图(2)所示(注:利润与投资量的单位:万元)
![]()
(1)分别求出利润
与
关于投资量
的函数关系式;
(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图
,抛物线
与直线
交于
、
两点,过
作
轴交抛物线于点
,直线
交
轴于点
.
求
、
、
三点的坐标;
若点
是线段
上的一个动点,过
作
轴交抛物线于
点,连接
、
,当
时,求
的值;
如图
,连接
,
及
,设点
是
的中点,点
是线段
上任意一点,将
沿边
翻折得到
,求当
为何值时,
与
重叠部分的面积是
面积的
.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图.一次函数y=
x+1的图象L1交y轴于点A,一次函数y=﹣x+3的图象L2交x轴于点B,L1与L2交于点C.
![]()
(1)求点A与点B的坐标;
(2)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知一次函数
的图像与x轴交于点
,与
轴交于点
.
![]()
(1)求直线
的解析式;
(2)在坐标系中能否找到点
,使得
且
?如果能,求出满足条件的点
的坐标;如果不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com