精英家教网 > 初中数学 > 题目详情
(2013•莆田)已知在Rt△ABC中,∠C=90°,sinA=
5
13
,则tanB的值为
12
5
12
5
分析:根据题意作出直角△ABC,然后根据sinA=
5
13
,设一条直角边BC为5,斜边AB为13,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tnaB.
解答:解:
∵sinA=
5
13

∴设BC=5,AB=13,
则AC=
AB2-BC2
=12,
故tanB=
AC
BC
=
12
5

故答案为:
12
5
点评:本题考查了互余两角三角函数的关系,属于基础题,解题的关键是掌握三角函数的定义和勾股定理的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田)如图所示,某学校拟建一个含内接矩形的菱形花坛(花坛为轴对称图形).矩形的四个顶点分别在菱形四条边上,菱形ABCD的边长AB=4米,∠ABC=60°.设AE=x米(0<x<4),矩形EFGH的面积为S米2
(1)求S与x的函数关系式;
(2)学校准备在矩形内种植红色花草,四个三角形内种植黄色花草.已知红色花草的价格为20元/米2,黄色花草的价格为40元/米2.当x为何值时,购买花草所需的总费用最低,并求出最低总费用(结果保留根号)?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莆田质检)已知:抛物线y=
1
4
x2+1
的顶点为M,直线l过点F(0,2)且与抛物线分别相交于A、B两点.过点A、B分别作x轴的垂线,垂足分别为点C、D,连接CF、DF.
(1)如图:
①若A(-1,
5
4
),求证:AC=AF; 
②若A(m,n),判断以CD为直径的圆与直线l的位置关系.并加以证明.
(2)若直线l绕点F旋转,且与x轴交于点P,PC×PD=8.求直线l的解析式.

查看答案和解析>>

同步练习册答案