【题目】如图,正方形 ABCD,点 E,F 分别在 AD,CD 上,且DE=CF,AF 与 BE 相交于点G.
![]()
(1)求证:AF⊥BE;
(2)若 AB=6,DE=2,AG的长
【答案】(1)见解析;(2)
.
【解析】
(1)由正方形的性质得出∠BAE=∠ADF=90°,AB=AD=CD,得出AE=DF,由SAS证明△BAE≌△ADF,即可得出结论;
(2)由(1)得∠AGE=90°,由勾股定理得出BE=
,在Rt△ABE中,由三角形面积即可得出结果.
解;(1)证明:∵四边形ABCD是正方形,
∴∠BAE=∠ADF=90°,AB=AD=CD,
∵DE=CF,
∴AE=DF,
在△BAE和△ADF中,
,
∴△BAE≌△ADF(SAS),
∴∠EAF=∠ABE,
∵∠ABE+∠AEG=90°,
∴∠EAF+∠AEG=90°即∠AGE=90°,
∴AF⊥BE.
(2)解:由(1)得:∠AGE=90°,
∵AB=6,DE=2,
∴AE=4,
∴BE=
,
在Rt△ABE中,
AB×AE=
BE×AG,∴AG=
.
科目:初中数学 来源: 题型:
【题目】(本题满分10分)阅读下列材料:
(1)关于x的方程x2-3x+1=0(x≠0)方程两边同时乘以
得:
即
,
,
(2)a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2).
根据以上材料,解答下列问题:
(1)x2-4x+1=0(x≠0),则
= ______ ,
= ______ ,
= ______ ;
(2)2x2-7x+2=0(x≠0),求
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③
.
其中正确的是
![]()
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:
车型 | 运费 | |
运往甲地/(元/辆) | 运往乙地/(元/辆) | |
大货车 | 720 | 800 |
小货车 | 500 | 650 |
(1)求这两种货车各用多少辆;
(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;
(2)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在 Rt△ABC 中,∠BAC=90°,AB=6,AC=8,D 为 AC 上一点,将△ABD 沿 BD 折叠,使点 A 恰好落在 BC 上的 E 处,则折痕 BD 的长是( )
![]()
A.5B.
C.3
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,若直线
交
轴于点
、交
轴于点
,将
绕点
逆时针旋转
得到
.过点
,
,
的抛物线
.
求抛物线
的表达式;
若与
轴平行的直线
以
秒钟一个单位长的速度从
轴向左平移,交线段
于点
、交抛物线
于点
,求线段
的最大值;
如图②,点
为抛物线
的顶点,点
是抛物线
在第二象限的上一动点(不与点
、
重合),连接
,以
为边作图示一侧的正方形
.随着点
的运动,正方形的大小、位置也随之改变,当顶点
或
恰好落在
轴上时,直接写出对应的点
的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数
图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(
,y2)是抛物线上两点,则
y1>y2.其中说法正确的是( )
![]()
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠A=∠B=90°,E是AB上一点,且AE=BC,∠1=∠2.
(1)证明:AB=AD+BC;
(2)判断△CDE的形状?并说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A的坐标为(﹣6,6),以A为顶点的∠BAC的两边始终与x轴交于B、C两点(B在C左面),且∠BAC=45°.
![]()
(1)如图,连接OA,当AB=AC时,试说明:OA=OB.
(2)过点A作AD⊥x轴,垂足为D,当DC=2时,将∠BAC沿AC所在直线翻折,翻折后边AB交y轴于点M,求点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com