精英家教网 > 初中数学 > 题目详情

直线l经过A(1,0)且与双曲线y=数学公式在第一象限交于点B(2,1),过点P(p+1,p-1)(p>1)作x轴的平行线分别交于双曲线y=数学公式和y=数学公式(x<0)于M,N两点,
(1)求m的值及直线l的解析式;
(2)直线y=-x-3与x轴、y轴分别交于点C、D,点E在直线y=-x-3上,且点E在第三象限,使得数学公式,平移线段ED得线段HQ(点E与H对应,点D与Q对应),使得H、Q恰好都落在y=数学公式的图象上,求H、Q两点坐标.
(3)是否存在实数p,使得S△AMN=4S△APM?若存在,求所有满足条件的p的值,若不存在,请说明理由.

解:(1)由点B(2,1)在y=上,有1=,即m=2.
设直线l的解析式为y=kx+b,
由点A(1,0),点B(2,1)在y=kx+b上,

解得
故所求直线l的解析式为y=x-1;

(2)∵直线y=-x-3与x轴、y轴分别交于点C、D,点E在直线y=-x-3上,且点E在第三象限,使得
∴D点的横坐标比E点的横坐标大1,D点的纵坐标比E点的纵坐标小1;
∴H点的横坐标比Q点的横坐标大1,H点的纵坐标比Q点的纵坐标小1,
设H点的坐标为(u,v),Q点的坐标(u+1,v-1),则

解得(不合题意舍去),
则H点的坐标为(1,2),Q点的坐标(2,1);

(3)存在.理由如下:
∵P点坐标为(p+1,p-1),MN∥x轴,
∴点M、N的纵坐标都为p-1,
∴M(,p-1),N(-,p-1),可得MN=
∴S△AMN=•(p-1)=2,
当p>1时,S△APM=(p+1-)(p-1)=(p2-3),
∵S△AMN=4S△APM
∴4×(p2-3)=2,
解得p1=-2(不合题意,舍去),p2=2.
∴满足条件的p的值为2.
分析:(1)将点B(2,1)代入y=,即可求出m的值,从而得到反比例函数的解析式;将点A(1,0),点B(2,1)分别代入y=kx+b,即可求出l的解析式;
(2)根据题意可得D点的横坐标比E点的横坐标大1,D点的纵坐标比E点的纵坐标小1;根据平移的性质可得H点的横坐标比Q点的横坐标大1,H点的纵坐标比Q点的纵坐标小1,可设H点的坐标为(u,v),表示出Q点的坐标,根据H、Q恰好都落在y=的图象上,可得方程组求解即可;
(3)由于P点坐标为(p+1,p-1),则点M、N的纵坐标都为p-1,得到M(,p-1),N(-,p-1),可得MN=,计算出S△AMN=•(p-1)=2,当p>1时,S△APM=(p+1-)(p-1)=(p2-3),利用S△AMN=4S△APM,得到4×(p2-3)=2,然后解方程得到p1=-(不合题意,舍去),p2=
点评:本题考查了反比例函数综合题,学会待定系数法求函数解析式,平移的性质,解方程组以及会计算三角形的面积的知识.注意点在反比例函数图象上,点的横纵坐标满足其解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、【附加题】已知二次函数y=x2+2(m+1)x-m+1.
(1)随着m的变化,该二次函数图象的顶点P是否都在某条抛物线上?如果是,请求出该抛物线的函数表达式;如果不是,请说明理由.
(2)如果直线y=x+1经过二次函数y=x2+2(m+1)x-m+1图象的顶点P,求此时m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•盘锦)如图,在平面直角坐标系中,直线l经过原点O,且与x轴正半轴的夹角为30°,点M在x轴上,⊙M半径为2,⊙M与直线l相交于A,B两点,若△ABM为等腰直角三角形,则点M的坐标为
(2
2
,0)或(-2
2
,0)
(2
2
,0)或(-2
2
,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•自贡)已知直线l经过点A(1,0)且与直线y=x垂直,则直线l的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

直线y=-x-3经过点C(1,m),并与坐标轴交于A、B两点,过B、C两点的抛物线y=x2+bx+c与x轴的负半轴交于D点,
(1)求点C的坐标及抛物线的解析式;
(2)抛物线y=x2+bx+c的对称轴为直线MN,直线MN与x轴相交于点F,直线MN上有一动点P,过P作直线PE⊥AB,垂足为E,直线PE与x轴相交于点H
①当P点在直线MN上移动时,是否存在这样的P点,使以A、P、H为顶点的三角形与△FBC相似?若存在,请求出P点的坐标;若不存在,请说明理由;
②若⊙I始终过A、P、E三点,当P点在MN上运动时,圆心I在
C
C
上运动.(先作选择,再说明理由) 
A.一个圆   B.一个反比例函数图象  C.一条直线  D.一条抛物线

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC于点N、E、M.
(1)当直线l经过点C时(如图2),证明:BN=CD;
(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;
(3)请直接写出BN、CE、CD之间的等量关系.

查看答案和解析>>

同步练习册答案