解:(1)在直线解析式y=

x-2中,令x=0,得y=-2;令y=0,得x=4,
∴A(4,0),C(0,-2).
设抛物线的解析式为y=ax
2+bx+c,
∵点A(4,0),B(1,0),C(0,-2)在抛物线上,
∴

,
解得a=

,b=

,c=-2.
∴抛物线的解析式为:y=

x
2+

x-2.
(2)设点D坐标为(x,y),则y=

x
2+

x-2.
在Rt△AOC中,OA=4,OC=2,由勾股定理得:AC=

.
如答图1所示,连接CD、AD.
过点D作DF⊥y轴于点F,过点A作AG⊥FD交FD的延长线于点G,
则FD=x,DG=4-x,OF=AG=y,FC=y+2.

S
△ACD=S
梯形AGFC-S
△CDF-S
△ADG=

(AG+FC)•FG-

FC•FD-

DG•AG=

(y+y+2)×4-

(y+2)•x-

(4-x)•y
=2y-x-4
将y=

x
2+

x-2代入得:S
△ACD=2y-x-4=-x
2+4x=-(x-2)
2+4,
∴当x=2时,△ACD的面积最大,最大值为4.
当x=2时,y=1,∴D(2,1).
∵S
△ACD=

AC•DE,AC=

,
∴当△ACD的面积最大时,高DE最大,
则DE的最大值为:

=

=

.
∴当D与直线AC的距离DE最大时,点D的坐标为(2,1),最大距离为

.
分析:(1)首先求出点A,点C的坐标;然后利用待定系数法求出抛物线的解析式;
(2)AC为定值,当DE最大时,△ACD的面积最大,因此只需要求出△ACD面积的最大值即可.如解答图所示,作辅助线,利用S
△ACD=S
梯形AGFC-S
△CDF-S
△ADG求出S
△ACD的表达式,然后利用二次函数的性质求出最大值,并进而求出点D的坐标和DE的最大值.
点评:本题是二次函数的综合题,考查了二次函数的图象与性质、待定系数法、最值、图形面积计算等知识点,难度不大.第(2)问有多种解法,同学们可以从不同角度尝试与探究.