精英家教网 > 初中数学 > 题目详情
已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.
(1)在图中作出⊙O(不写作法,保留作图痕迹),判断直线BC与⊙O的位置关系,并说明理由;
(2)若AC=3,tanB=,求⊙O的半径长.

【答案】分析:(1)作线段AD的垂直平分线,交AB于O点,以O为圆心,OA为半径画圆即可.连接OD,由AD为角平分线可知∠OAD=∠CAD,由OA=OD可知∠OAD=∠ODA,得出内错角相等,判断OD∥AC即可;
(2)在Rt△ABC中,由AC=3,tanB=,得BC=4,利用勾股定理得AB=5,设OA=OD=R,则OB=5-R,由△OBD∽△ABC,利用相似比求R的值.
解答:解:(1)直线BC与⊙O相切.理由如下:
作图如图所示,连接OD,
∵AD为角平分线,∴∠OAD=∠CAD,
又∵OA=OD,∴∠OAD=∠ODA,
∴∠CAD=∠ODA,
∴OD∥AC,
∵AC⊥BC,
∴OD⊥BC,
∴直线BC与⊙O相切;

(2)在Rt△ABC中,∵AC=3,tanB=
=,解得BC=4,由勾股定理,得AB==5,
设OA=OD=R,则OB=5-R,
∵∠ODB=∠ACB=90°,
∴OD∥AC,
∴△OBD∽△ABC,
=,即=
解得R=,∴⊙O的半径为
点评:本题考查了圆的作图,圆的切线的判定,相似三角形的判定与性质,解直角三角形是知识.关键是明确圆的有关性质,将圆的问题转化为三角形的问题进行解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知在Rt△ABC中,∠ACB=90°,CD是AB上的中线,BC=2
5
,cos∠ACD=
2
3
,则CD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,那么BC=
8
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知在Rt△ABC中,∠C=90°,sinA=
513
,求tanB;
(2)如图,小方在五月一日假期中到郊外放风筝,风筝飞到C 处时的线长为20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.
(1)如图①,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由;
(2)连接DE,当t为何值时,△DEF为直角三角形?
(3)如图②,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形 AEA′D为菱形?

查看答案和解析>>

同步练习册答案