【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),其中点B(3,0),与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;
(3)设点P是抛物线上且在x轴上方的任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.
![]()
【答案】(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)
【解析】
(1)抛物线的对称轴x=1、B(3,0)、A在B的左侧,根据二次函数图象的性质可知A(-1,0);
根据抛物线y=ax2+bx+c过点C(0,3),可知c的值.结合A、B两点的坐标,利用待定系数法求出a、b的值,可得抛物线L的表达式;
(2)由C、B两点的坐标,利用待定系数法可得CB的直线方程.对抛物线配方,还可进一步确定抛物线的顶点坐标;通过分析h为何值时抛物线顶点落在BC上、落在OB上,就能得到抛物线的顶点落在△OBC内(包括△OBC的边界)时h的取值范围.
(3)设P(m,﹣m2+2m+3),过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,
通过证明△BNP≌△PMQ求解即可.
(1)把点B(3,0),点C(0,3)代入抛物线y=﹣x2+bx+c中得:,![]()
解得:
,
∴抛物线的解析式为:y=﹣x2+2x+3;
(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即抛物线的对称轴是:x=1,
设原抛物线的顶点为D,
∵点B(3,0),点C(0,3).
易得BC的解析式为:y=﹣x+3,
当x=1时,y=2,
如图1,当抛物线的顶点D(1,2),此时点D在线段BC上,抛物线的解析式为:y=﹣(x﹣1)2+2=﹣x2+2x+1,
h=3﹣1=2,
当抛物线的顶点D(1,0),此时点D在x轴上,抛物线的解析式为:y=﹣(x﹣1)2+0=﹣x2+2x﹣1,
h=3+1=4,
∴h的取值范围是2≤h≤4;
(3)设P(m,﹣m2+2m+3),
如图2,△PQB是等腰直角三角形,且PQ=PB,
过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,
易得△BNP≌△PMQ,
∴BN=PM,
即﹣m2+2m+3=m+3,
解得:m1=0(图3)或m2=1,
∴P(1,4)或(0,3).
科目:初中数学 来源: 题型:
【题目】如图,已知
,将一个直角的顶点置于点
,并将它绕着点
旋转,两条直角边分别交射线
于点
,交
的延长线于点
,联结
交
于点
,设
.
![]()
(1)当
时,求
的长;
(2)若
,求
关于
的函数关系式及定义域;
(3)旋转过程中,若
,求此时
的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,
是等腰直角三角形,
,点
是直线
上的一个动点(点
与点
不重合),以
为腰作等腰直角
,连接
.
![]()
(1)如图①,当点
在线段
上时,直接写出
的位置关系,线段
,
之间的数量关系;
(2)如图②,当点
在线段
的延长线上时,试判断线段
,
的位置关系,线段
之间的数量关系,并说明理由;
(3)如图③,当点
在线段
的延长线上时,试判断线段
的位置关系,线段
之间的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形
的三个顶点的坐标分别为
,
,![]()
(1)作出三角形
关于
轴对称的三角形![]()
(2)点
的坐标为 .
(3)①利用网络画出线段
的垂直平分线
;②
为直线上
上一动点,则
的最小值为 .
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明遇到这样一个问题:如图,矩形纸片ABCD,AB=2,BC=3,现要求将矩形纸片剪两刀后拼成一个与之面积相等的正方形,小明尝试给出了下面四种剪的方法,如图①②③④,图中BE=
.其中剪法正确的是( )
![]()
A.①②B.①③C.②③D.③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=
x+3的图象分别与y轴,x轴交于点A,B,点P从点B出发,沿射线BA以每秒1个单位的速度运动,设点P的运动时间为t秒.
![]()
(1)点P在运动过程中,若某一时刻,△OPA的面积为3,求此时P的坐标;
(2)在整个运动过程中,当t为何值时,△AOP为等腰三角形?请直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=﹣
x+3与x轴、y轴分别交于A、C,以OA、OC为边在第一象限内作长方形OABC.
![]()
(1)将△ABC沿B′D对折,使得点A与点C重合,折痕交AB于点D,求直线CD的解析式;
(2)若在x轴上存在点P,使△ADP为等腰三角形,求出符合条件的点P坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形
是菱形,
B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM 的最小值为________。
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com