精英家教网 > 初中数学 > 题目详情

已知抛物线上一点到其焦点的距离为

   (I)求的值;

   (II)设抛物线上一点的横坐标为,过的直线交于另一点,交轴于点,过点的垂线交于另一点.若的切线,求的最小值.

解析(Ⅰ)由抛物线方程得其准线方程:,根据抛物线定义

到焦点的距离等于它到准线的距离,即,解得

抛物线方程为:,将代入抛物线方程,解得

(Ⅱ)由题意知,过点的直线斜率存在且不为0,设其为

,当   则

联立方程,整理得:

即:,解得

,而直线斜率为

,联立方程

整理得:,即:

 ,解得:,或

而抛物线在点N处切线斜率:

MN是抛物线的切线,, 整理得

,解得(舍去),或

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图(1),已知抛物线y=ax2+b与x轴交于A、B两点(A在B的左边),与y轴交于点M,点B的坐标为(4,0),点M的坐标为(0,-4).
(1)求抛物线的解析式;
(2)点N的坐标为(O,-3),作DN⊥y轴于点N,交抛物线于点D;直线y=-5垂直y轴于点C(0,-5);作DF垂直直线y=-5于点F,作BE垂直直线y=-5于点E.
①求线段的长度:MC=
 
,MN=
 
;BE=
 
,BN=
 
;DF=
 
,DN=
 

②若P是这条抛物线上任意一点,猜想:该点到直线y=-5的距离PH与该点到N点的距离PN有怎样的数量关系?
(3)如图(2),将N点改为抛物线y=x2-4x+3对称轴上的一点,直线y=-5改为直线y=m(m<-1),已知对于抛物线y=x2-4x+3上的每一点,都有该点到直线y=m的距离等于该点到点N的距离,求m的值及点N的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2+bx+c,当x=0时,有最小值为1;且在直线y=2上截得的线段长为4.
(1)求此抛物线的解析式;
(2)若点P是抛物线的任意一点,记点P到x轴的距离为d1,点P与点F(0,2)的距离为d2,猜想d1、d2的大小关系,并证明;
(3)若直线PF交此抛物线于另一点Q(异于P点).
①试判断以PQ为直径的圆与x轴的位置关系,并说明理由;
②以PQ为直径的圆与y轴的交点为A、B,若OA•OB=1,求直线PQ对应的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望峰火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题--将军饮马问题:
如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的P点饮马后再到B点宿营.请问怎样走才能使总的路程最短?
做法如下:如图1,从B出发向河岸引垂线,垂足为D,在AD的延长线上,取B关于河岸的对称点B′,连接AB′,与河岸线相交于P,则P点就是饮马的地方,将军只要从A出发,沿直线走到P,饮马之后,再由P沿直线走到B,所走的路程就是最短的.
(1)观察发现
再如图2,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E、F是底边AD与BC的中点,连接EF,在线段EF上找一点P,使BP+AP最短.
作点B关于EF的对称点,恰好与点C重合,连接AC交EF于一点,则这点就是所求的点P,故BP+AP的最小值为
2
3
2
3

(2)实践运用
如图3,已知⊙O的直径MN=1,点A在圆上,且∠AMN的度数为30°,点B是弧AN的中点,点P在直径MN上运动,求BP+AP的最小值.
(3)拓展迁移
如图4,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
①求这条抛物线所对应的函数关系式;
②在抛物线的对称轴直线x=1上找到一点M,使△ACM周长最小,请求出此时点M的坐标与△ACM周长最小值.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

精英家教网先阅读短文,再回答短文后面的问题.
平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的准线.
下面根据抛物线的定义,我们来求抛物线的方程.
如上图,建立直角坐标系xoy,使x轴经过点F且垂直于直线l,垂足为K,并使原点与线段KF的中点重合.设|KF|=p(p>0),那么焦点F的坐标为(
p
2
,0),准线l的方程为x=-
p
2

设点M(x,y)是抛物线上任意一点,点M到l的距离为d,由抛物线的定义,抛物线就是满足|MF|=d的点M的轨迹.
∵|MF|=
(x-
p
2
)
2
+y2
,d=|x+
p
2
|∴
(x-
p
2
)
2
+y2
=|x+
p
2
|
将上式两边平方并化简,得y2=2px(p>0)①
方程①叫做抛物线的标准方程,它表示的抛物线的焦点在x轴的正半轴上,坐标是(
p
2
,0),它的准线方程是x=-
p
2

一条抛物线,由于它在坐标平面内的位置不同,方程也不同.所以抛物线的标准方程还有其它的几种形式:y2=-2px,x2=2py,x2=-2py.这四种抛物线的标准方程,焦点坐标以及准线方程列表如下:
标准方程  交点坐标  准线方程 
 y2=2px(p>0)  (
p
2
,0
 x=-
p
2
 y2=-2px(p>0)  (-
p
2
,0
 x=
p
2
 x2=2py(p>0)  (0,
p
2
 y=-
p
2
 x2=-2py(p>0)  (0,-
p
2
 y=-
p
2
解答下列问题:
(1)①已知抛物线的标准方程是y2=8x,则它的焦点坐标是
 
,准线方程是
 

②已知抛物线的焦点坐标是F(0,-6),则它的标准方程是
 

(2)点M与点F(4,0)的距离比它到直线l:x+5=0的距离小1,求点M的轨迹方程.
(3)直线y=
3
x+b
经过抛物线y2=4x的焦点,与抛物线相交于两点A、B,求线段AB的长.

查看答案和解析>>

同步练习册答案