精英家教网 > 初中数学 > 题目详情
如图①,在边长为8
2
cm正方形ABCD中,E,F是对角线AC上的两个动点,它们分别从点A,点C同时出发,沿对角线以1cm/s同速度运动,过E作EH垂直AC交的直角边于H;过F作FG垂直AC交Rt△ACD的直角边于G,连接HG,EB.设HE,EF,FG,GH围成的图形面积为S1,AE,EB,BA围成的图形面积为S2(这里规定:线段的面积为0).E到达C,F到达A停止.若E的运动时间为xs,解答下列问题:
(1)当0<x<8时,直接写出以E,F,G,H为顶点的四边形是什么四边形,并求x为何值时,S1=S2
(2)①若y是S1与S2的和,求y与x之间的函数关系式.(图②为备用图)
②求y的最大值.
精英家教网
分析:(1)根据正方形的性质可知△AEH≌△CFG,由平行线的判定定理可知HE∥GF,即可求出结论.
根据正方形的边长可求出AC的长,过B作BO⊥AC于O,OB即为△ABE的高,设AE=x,YO用含x的关系式表示出S1、S2即可求出x的值.
(2)①因为当x=8时,EF重合此时S1=0,y=S2故应分0≤x<8与8≤x≤16两种情况讨论.
②同①分两种情况用含x的代数式表示出y的值,然后根据二次函数的最值即可求出y的最大值.
解答:解:(1)根据正方形的性质可知∠HAE=∠GCF,由于A、C运动的速度相同,
故AE=CF,易证△AEH≌△CFG,由平行线的判定定理可知HE∥GF,
所以,以E,F,G,H为顶点的四边形是矩形.(1分)
∵正方形边长为8
2

∴AC=16.
∵AE=x,过B作BO⊥AC于O,则BO=8.精英家教网
∴S2=4x(2分)
∵HE=x,EF=16-2x,
∴S1=x(16-2x).(3分)
当S1=S2时,x(16-2x)=4x.
解得x1=0(舍去),x2=6.(4分)
∴当x=6时,S1=S2

(2)①当0≤x<8时,y=x(16-2x)+4x=-2x2+20x.(5分)
当8≤x≤16时,AE=x,CE=HE=16-x,EF=16-2(16-x)=2x-16.(6分)
∴S1=(16-x)(2x-16).
∴y=(16-x)(2x-16)+4x=-2x2+52x-256.(7分)
②解法1:当0≤x<8时,y=-2x2+20x=-2(x2-10x+25)+50=-2(x-5)2+50,
∴当x=5时,y的最大值为50.(8分)
当8≤x≤16时,y=-2x2+52x-256=-2(x-13)2+82,
∴当x=13时,y的最大值为82.(9分)
综上可得,y的最大值为82.(10)
解法2:y=-2x2+20x(0≤x<8),
当x=-
20
2×(-2)
=5时,y的最大值为50.(8分)
y=-2x2+52x-256(8≤x≤16),
当x=-
52
2×(-2)
=13时,y的最大值为82.(9分)
综上可得,y的最大值为82.(10)

说明:(1)自变量取值含0,8,16或不含均可不扣分.
(2)图②中的草图不正确不扣分.
点评:本题综合考查了正方形的性质及二次函数图象上点的特征,把求面积的最值转化为求二次函数的最值问题,锻炼了同学们对所学知识的综合运用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在“五个重庆”建设中,为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,设矩形的边长AB=y米,BC=x米.(注:取 π=3.14)
(1)试用含x的代数式表示y;
(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428 元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;
①设该工程的总造价为W元,求W关于x的函数关系式;
②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由;
③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能精英家教网,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD的边长为8,点E、F分别在AB、BC上,AE=3,CF=1,P是对角线AC上的个动点,则PE+PF的最小值是(  )
A、
89
B、
73
C、4
5
D、8
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知矩形OABC,点P在边OA上(不与端点重合),点Q在边CO上(不与端点重合).
(1)如图(1),若∠BPQ=90°,且△OPQ与△PAB和△QPB相似,请写出表示这三个三角形相似的式子,并探究此时线段OQ、QB、BA之间的数量关系.
(2)若∠PQB=90°,且△OPQ与△PAB、△QPB都相似,如图(2),请重新写出表示这三个三角形相似的式子,并证明AB:OA=2
3
:3.
(3)在(1)中,若OA=8
2
,OC=8,OP=
2
CQ.以矩形OABC的两边OA、OC所在的直线分别为x轴和y轴,建立平面直角坐标系,如图(3),若某抛物线顶点为P,点B在抛物线上.
①求此抛物线的解析式.
②过线段BP上一动点M(点M与点P、B不重合),作y轴的平行线交抛物线于点N,若记点M的横坐标为m,试求线段MN的长L与m之间的函数关系式,画出该函数的示意图,并指出m取何值时,L有最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•本溪二模)如图,在12×6的网格图中(每个小正方形的边长均为1个单位长),⊙A的半径为1,⊙B的半径为2,要使⊙A与静止的⊙B相切,那么⊙A由图示位置需向右平移
2、4、6、8
2、4、6、8
个单位长.

查看答案和解析>>

科目:初中数学 来源:2011年重庆市江津区中考数学试卷(解析版) 题型:解答题

在“五个重庆”建设中,为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,设矩形的边长AB=y米,BC=x米.(注:取 π=3.14)
(1)试用含x的代数式表示y;
(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428 元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;
①设该工程的总造价为W元,求W关于x的函数关系式;
②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由;
③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.

查看答案和解析>>

同步练习册答案