精英家教网 > 初中数学 > 题目详情
如图所示,在边长为4的正方形EFCD上截去一角,成为五边形ABCDE,其中AF=2,BF=1,在AB上取一点P,设P到DE的距离PM=x,P到CD的距离PN=y,试写出矩形PMDN的面积S与x之间的函数关系式.
∵在边长为4的正方形EFCD上截去一角,成为五边形ABCDE,
∴存在线段AB且AB的位置已经固定,
当P和B重合时,x=4,即x≤4
当x=2,P和A重合,即x≥2,
∴x的取值范围是2≤x≤4,
如图,S矩形PNDM=xy,且2≤x≤4,
延长NP交EF于G,显然PGBF,
∴△AGP△AFB,
PG
BF
=
AG
AF

4-y
1
=
x-2
2

∴y=-
1
2
x+5,
∴S=xy=-
1
2
x2+5x,
即S=-
1
2
x2+5x(2≤x≤4).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

某种电缆在空中架设时,两端挂起的电缆下垂都近似抛物线y=
1
100
x2的形状.今在一个坡度为1:5的斜坡上,俺水平距离间隔50米架设两固定电缆的位置离地面高度为20米的塔柱(如图),这种情况下在竖直方向上,下垂的电缆与地面的最近距离为(  )
A.12.75米B.13.75米C.14.75米D.17.75米

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQy轴与抛物线交于点Q.
(1)求经过B、E、C三点的抛物线的解析式;
(2)判断△BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=-
1
4
x2+2x,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.
(1)求抛物线的顶点坐标;
(2)求出球飞行的最大水平距离;
(3)若小明第二次仍从此处击球,使其最大高度不变,而球刚好进洞,则球飞行的路线满足抛物线的解析式是什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,二次函数的图象是由y=-x2向右平移1个单位,再向上平移4个单位所得到.
(1)求二次函数的解析式;
(2)若点P是抛物线对称轴l上一动点,求使AP+CP最小的点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知直线y=
1
2
x与抛物线y=ax2+b(a≠0)交于A(-4,-2),B(6,3)两点.抛物线与y轴的交点为C.
(1)求这个抛物线的解析式;
(2)在抛物线上存在点M,是△MAB是以AB为底边的等腰三角形,求点M的坐标;
(3)在抛物线上是否存在点P使得△PAC的面积是△ABC面积的
3
4
?若存在,试求出此时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知y=x2-ax+a+2与x轴交于A,B两点,与y轴交于点D(0,8),直线CD平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从点C出发,沿C?D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A?B运动,连接PQ,CB,设点P的运动时间t秒.(0<t<2).
(1)求a的值;
(2)当t为何值时,PQ平行于y轴;
(3)当四边形PQBC的面积等于14时,求t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销售量就减少10件.设销售单价为x元(x≥50),一周的销售量为y件.
(1)求y与x之间的函数关系式;
(2)在超市对该种商品投入不超过10000元的情况下,要使得一周的销售利润达到8000元,销售单价应定为多少元?
(3)利用配方法,请你为超市估算一下,若要获得最大利润,一周应进货多少件?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-x2+mx-m+2.
(Ⅰ)若抛物线与x轴的两个交点A、B分别在原点的两侧,并且AB=
5
,试求m的值;
(Ⅱ)设C为抛物线与y轴的交点,若抛物线上存在关于原点对称的两点M、N,并且△MNC的面积等于27,试求m的值.

查看答案和解析>>

同步练习册答案