½â£º£¨1£©¡ßÖ±ÏßAB½âÎöʽΪy=x+1£¬¡àD£¨0£¬1£©£¬
ÓÖ¡ßC£¨0£¬-3£©£¬¡àCD=1-£¨-3£©=4£¬
¡àS
¡÷ADC=

¡Á4¡Á2=4£¬
ÉèÖ±Ïßl
2µÄ½âÎöʽΪy=kx+b£¬
½«A£¨2£¬3£©£¬C£¨0£¬-3£©Á½µã´úÈ룬µÃ

£¬½âµÃ

£¬
ËùÒÔ£¬Ö±Ïßl
2µÄ½âÎöʽΪy=3x-3£¬

¹Ê´ð°¸Îª£º4£¬y=3x-3£»
£¨2£©ÓÉÖ±Ïßl
1µÄ½âÎöʽy=x+1£¬µÃB£¨-1£¬0£©£¬
ÓÉÖ±Ïßl
2µÄ½âÎöʽy=3x-3£¬µÃE£¨1£¬0£©£¬
ËùÒÔ£¬µ±x£¾1ʱ£¬l
1¡¢l
2±íʾµÄÁ½¸öº¯ÊýµÄº¯ÊýÖµ¶¼´óÓÚ0£»
£¨3£©´æÔÚ£®Óɹ´¹É¶¨Àí¿ÉÖªAD=

=2

£¼3£¬
·ÖÈýÖÖÇé¿ö£º
¢ÙÒÔAΪԲÐÄ£¬ADΪ°ë¾¶»»¡£¬ÓÉÓÚAD£¼3£¬»¡ÓëxÖáÎÞ½»µã£¬´Ëʱ£¬Pµã²»´æÔÚ£¬
¢ÚÒÔDΪԲÐÄ£¬ADΪ°ë¾¶»»¡ÓëxÖáÕý°ëÖáÓÐ1¸ö½»µã£¬P£¨

£¬0£©£¬
¢Û×÷Ïß¶ÎADµÄ´¹Ö±Æ½·ÖÏߣ¬ÓëxÖáÓÐ1¸ö½»µã£¬P£¨3£¬0£©£¬
¼´£ºÂú×ãÌâÒâµÄPµã×ø±êΪ£¨

£¬0£©»ò£¨3£¬0£©£®
·ÖÎö£º£¨1£©ÓÉÖ±ÏßAB½âÎöʽΪy=x+1¿ÉÖª£¬D£¨0£¬1£©£¬ÓÖC£¨0£¬-3£©£¬¿ÉÖªCD=4£¬¶øAµãºá×ø±êΪ2£¬ÓÉ´Ë¿ÉÇóS
¡÷ADC£¬ÓÉA£¨2£¬3£©£¬C£¨0£¬-3£©£¬ÀûÓá°Á½µã·¨¡±¿ÉÇóÖ±Ïßl
2µÄ½âÎöʽ£»
£¨2£©ÓÉl
1¡¢l
2µÄ½âÎöʽ¿ÉÇóB¡¢EÁ½µã×ø±ê£¬¸ù¾ÝÁ½µã×ø±ê£¬È·¶¨l
1¡¢l
2±íʾµÄÁ½¸öº¯ÊýµÄº¯ÊýÖµ¶¼´óÓÚ0ʱ£¬xµÄȡֵ·¶Î§£»
£¨3£©´æÔÚ£®Óɹ´¹É¶¨Àí¿ÉÖªAD=2

£¼3£¬·ÖÈýÖÖÇé¿ö£º¢ÙÒÔAΪԲÐÄ£¬ADΪ°ë¾¶»»¡ÓëxÖáÎÞ½»µã£¬´Ëʱ£¬Pµã²»´æÔÚ£¬¢ÚÒÔDΪԲÐÄ£¬ADΪ°ë¾¶»»¡ÓëxÖáÕý°ëÖáÓÐ1¸ö½»µã£¬´Ëʱ£¬PµãÓÐ1¸ö£¬¢Û×÷Ïß¶ÎADµÄ´¹Ö±Æ½·ÖÏߣ¬ÓëxÖáÕý°ëÖáÓÐ1¸ö½»µã£¬´Ëʱ£¬PµãÓÐ1¸ö£®
µãÆÀ£º±¾Ì⿼²éÁËÒ»´Îº¯ÊýµÄ×ÛºÏÔËÓ㮹ؼüÊÇÀûÓôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽ£¬¸ù¾Ý½âÎöʽÇóͼÏóÓë×ø±êÖáµÄ½»µã£¬ÐÎÊý½áºÏ£®ÀûÓõÈÑüÈý½ÇÐεÄÐÔÖÊ£¬²ÉÓû»¡£¬×÷´¹Ö±Æ½·ÖÏߵķ½·¨£¬ÔÚxÖáÉÏÕÒµÈÑüÈý½ÇÐεĶ¥µã×ø±ê£®