精英家教网 > 初中数学 > 题目详情

【题目】如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD= ,DC=SD=2,点M在侧棱SC上,∠ABM=60°.
(Ⅰ)证明:M是侧棱SC的中点;
(Ⅱ)求二面角S﹣AM﹣B的余弦值.

【答案】解:(Ⅰ)证明:作ME∥CD交SD于点E,则ME∥AB,ME⊥平面SAD, 连接AE,则四边形ABME为直角梯形,
作MF⊥AB,垂足为F,则AFME为矩形,
设ME=x,则SE=x,AE= =
MF=AE= ,FB=2﹣x,
由MF=FBtan 60°,得
解得x=1,即ME=1,
从而ME=
∴M为侧棱SC的中点.
(Ⅱ)解:MB= =2,
又∠ABM=60°,AB=2,∴△ABM为等边三角形.
又由(Ⅰ)知M为SC中点,SM= ,SA= ,AM=2,
∴SA2=SM2+AM2 , ∠SMA=90°,
取AM中点G,连结BG,取SA中点H,连结GH,
则BG⊥AM,GH⊥AM,
由此知∠BGH为二面角S﹣AM﹣B的平面角,
连结BH,在△BGH中,
BG= ,GH= ,BH= =
∴cos∠BGH= =﹣
∴二面角S﹣AM﹣B的余弦值为﹣

【解析】
【考点精析】利用棱锥的结构特征对题目进行判断即可得到答案,需要熟知侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣asinx﹣1,a∈R.
(1)若a=1,求f(x)在x=0处的切线方程;
(2)若f(x)≥0在区间[0,1)恒成立,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”
(1)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?

非读书迷

读书迷

合计

15

45

合计


(2)将频率视为概率,现在从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书谜”的人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方程D(X) 附:K2= n=a+b+c+d

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若对任意的实数a,函数f(x)=(x﹣1)lnx﹣ax+a+b有两个不同的零点,则实数b的取值范围是(
A.(﹣∞,﹣1]
B.(﹣∞,0)
C.(0,1)
D.(0,+∞)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在极坐标系中,点 ,曲线 .以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系. (Ⅰ)在直角坐标系中,求点A,B的直角坐标及曲线C的参数方程;
(Ⅱ)设点M为曲线C上的动点,求|MA|2+|MB|2取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知f(x)=|x+a|,g(x)=|x+3|﹣x,记关于x的不等式f(x)<g(x)的解集为M.
(1)若a﹣3∈M,求实数a的取值范围;
(2)若[﹣1,1]M,求实数a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设△ABC的内角A、B、C的对边长分别为a、b、c.设S为△ABC的面积,满足S= (a2+c2﹣b2). (Ⅰ)求B;
(Ⅱ)若b= ,求( ﹣1)a+2c的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)=lnx+x2﹣2ax+1(a为常数).
(1)讨论函数f(x)的单调性;
(2)若对任意的 ,都存在x0∈(0,1]使得不等式 成立,求实数m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为(
A.13
B.17
C.18
D.25

查看答案和解析>>

同步练习册答案