精英家教网 > 初中数学 > 题目详情

方程的解有多少个?写出其中的几个解来,在直角坐标系中分别描出以这些解为坐标的点,它们在一次函数的图像上吗?在一次函数y=5-x的图像上任取一点,它的坐标适合方程吗?以方程的解为坐标的所有点组成的图象与一次函数的图像相同吗?

答案:
解析:

方程的解有无数多个,如:等.

在直角坐标系中分别描出以这些解为坐标的点,它们都在一次函数的图像上;在一次函数y=5-x的图像上任取一点,它的坐标一定适合方程;以方程的解为坐标的所有点组成的图象与一次函数的图像完全相同.


提示:

以二元一次方程的解为坐标的点都在相应的一次函数图像上,一次函数图像上所有点的坐标都满足相应的二元一次方程.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

九年级(4)班在一次答题活动中,签筒中有4根形状,大小相同的纸签,签里头分别写上了一个方程:①x2-x=0;②(x-1)2-(2x-5)2=0;③x2+12x+36=0;④x2-3x-1=0.
(1)四个方程中有几个方程有两个相等的实数根并解有关方程;
(2)小明首先抽签,他看不到纸签上的方程的情况下,从签中随机地抽取一根纸签,那么他抽到两根均为正整数的方程的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•柳州)如图,在△ABC中,AB=2,AC=BC=
5

(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;
(2)求过A、B、C三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=
1
2
S△ABC
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).
 
附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
当x1=1时,即y2=1,∴y1=1,y2=-1.
当x2=3,即y2=3,∴y3=
3
,y4=-
3

所以,原方程的解是y1=1,y2=-1,y3=
3
,y4=-
3

再如x2-2=4
x2-2
,可设y=
x2-2
,用同样的方法也可求解.

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:044

(1)方程x+y=5的解有多少个?写出其中几个?

(2)在直角坐标系中分别描出以这些解为坐标的点,它们在一次函数y=5-x的图象上吗?

(3)在一次函数y=5-x的图象上任取一点,它的坐标适合方程x+y=5吗?

(4)以方程x+y=5的解为坐标的所有点组成的图象与一次函数y=5-x的图象相同吗?

查看答案和解析>>

科目:初中数学 来源:2012年广西柳州市中考数学试卷(解析版) 题型:解答题

如图,在△ABC中,AB=2,AC=BC=
(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;
(2)求过A、B、C三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=S△ABC
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).
 
附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
当x1=1时,即y2=1,∴y1=1,y2=-1.
当x2=3,即y2=3,∴y3=,y4=-
所以,原方程的解是y1=1,y2=-1,y3=,y4=-
再如x2-2=4,可设y=,用同样的方法也可求解.

查看答案和解析>>

同步练习册答案