精英家教网 > 初中数学 > 题目详情

关于x的方程x2-(m-1)x+m-2=0的两根互为倒数,则m的值是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
C
分析:首先设α,β是关于x的方程x2-(m-1)x+m-2=0的两根,根据根与系数的关系,即可得αβ=m-2,又由关于x的方程x2-(m-1)x+m-2=0的两根互为倒数,即可得方程:m-2=1,则可求得m的值.
解答:设α,β是关于x的方程x2-(m-1)x+m-2=0的两根,
∴αβ=m-2,
∵关于x的方程x2-(m-1)x+m-2=0的两根互为倒数,
∴αβ=1,
∴m-2=1,
解得:m=3.
故选C.
点评:此题考查了一元二次方程根与系数的关系.此题难度不大,注意若α,β是关于x的方程ax2+bx+c=0的两根,则α+β=-,αβ=
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如果关于x的方程x2+x-
1
4
k=0
没有实数根,那么k的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

用配方法解关于x的方程x2+px=q时,应在方程两边同时加上(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2x+k=0的一根是2,则k=
0
0

查看答案和解析>>

科目:初中数学 来源: 题型:

通过观察,发现方程不难求得方程:x+
2
x
=3+
2
3
的解是x1=3,x2=
2
3
x+
2
x
=4+
2
4
的解是x1=4,x2=
2
4
x+
2
x
=5+
2
5
的解是x1=5,x2=
2
5
;…
(1)观察上述方程及其解,可猜想关于x的方程x+
2
x
=a+
2
a
的解是
x1=a,x2=
2
a
x1=a,x2=
2
a

(2)试验证:当x1=a-1,x2=
2
a-1
都是方程x+
2
x
=a+
2
a-1
-1
的解;
(3)利用你猜想的结论,解关于x的方程
x2-x+2
x-1
=a+
2
a-1

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程
x2+4
x(x-2)
-
x
x-2
=
a
x
无解,求a的值?

查看答案和解析>>

同步练习册答案