如图,在平面直角坐标系xOy中,矩形OEFG的顶点F坐标为(4,2),OG边与y轴重合。将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM
与GF交于点A.
1.判断△OGA和△NPO是否相似,并说明理由;
2.求过点A的反比例函数解析式;
3.若(2)中求出的反比例函数的图象与EF交于B点, 请探索:直线AB与OM的位置关系,并说明理由.
4.在GF所在直线上,是否存在一点Q,使△AOQ为等腰三角形.若存在,请直接写出
所有满足要求的Q点坐标.
![]()
1.∵∠OGA=∠M=90°,
∠GOA=∠MON
∴△OGA∽△OMN;
2.∵AG:OP=OG:NP,∵OP=OG=2、PN=OM=OE=4,
∴AG=1
∴A(1,2) ………………3分
∴![]()
3.AB⊥ OM ………………5分
代入得 B(4,
),
………………6
∵AG:BF=OG:AF=2:3,∠AGO=∠BFA=900
△OGA∽△AFB ………………7分
∴∠AOG=∠BAF ∵∠AOG+∠OAG=900
∴∠BAF+∠OAG=900
∴ ∠OAB=900
∴AB⊥OM ………………8分
(其它方法酌情给分)
4.Q
(1+
,
2) 或Q(1-
,2)
………………9分
Q(-1,2) 或 Q(-1.5,2)
【解析】(1)根据两个角对应相等,即可证明两个三角形相似;
(2)要求反比例函数的解析式,则需求得点A的坐标,即要求得AG的长,根据旋转的两个图形全等的性质以及相似三角形的对应边的比相等可以求解
(3)求出B点坐标,通过△OGA∽△AFB ,求得∠OAB=900,从而得出结论
(4)分别有四种情况符合条件:AQ=OA (由两种情况),OQ=OA,QA=OQ
科目:初中数学 来源: 题型:
| BD |
| AB |
| 5 |
| 8 |
查看答案和解析>>
科目:初中数学 来源: 题型:
| 5 |
| 29 |
| 5 |
| 29 |
查看答案和解析>>
科目:初中数学 来源: 题型:
| k |
| x |
| k |
| x |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com