精英家教网 > 初中数学 > 题目详情

如图1,正方形和正三角形的边长都为1,点分别在线段上滑动,设点的距离为,到的距离为,记(当点分别与重合时,记).

(1)当时(如图2所示),求的值(结果保留根号);

(2)当为何值时,点落在对角形上?请说出你的理由,并求出此时的值(结果保留根号);

(3)请你补充完成下表(精确到0.01):

0.03

0

0.29

0.29

0.13

0.03

(4)若将“点分别在线段上滑动”改为“点分别在正方形边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点运动所形成的大致图形.

(参考数据:.)

解:(1)过

(2)当时,点在对角线上,其理由是:

平分

时,点落在对角线上.

(以下给出两种求的解法)

方法一:

中,

方法二:当点在对角线上时,有

解得

(3)

0.13

0.03

0

0.03

0.13

0.29

0.50

0.50

0.29

0.13

0.03

0

0.03

0.13

(4)由点所得到的大致图形如图所示:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,是一个长方形地面,现有正三角形、正方形和正六边形三种瓷砖若干,要求:
(1)三种瓷砖都必须用到;(2)铺成长方形或近似长方形,请你设计一种方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•邢台二模)规律:
如图1,直线m∥n,A、B为直线n上的点,C、P为直线m上的点.如果A、B、C为三个定点,点P在m上移动,那么无论点P移动到何位置,△ABP与△ABC的面积总相等,其理由是
同底等高的两个三角形面积相等
同底等高的两个三角形面积相等

应用:
(1)如图2,△ABC和△DCE都是等边三角形,若△ABC的边长为1,则△BAE的面积是
3
4
3
4

(2)如图3,四边形ABCD和四边形BEFG都是正方形,若正方形ABCD的边长为4,求△ACF的面积.
(3)如图4,五边形ABCDE和五边形BFGHP都是正五边形,若正五边形ABCDE的边长为a,求△ACH的面积(结果不求近似值).

查看答案和解析>>

科目:初中数学 来源: 题型:

附加题
(1)一幅图案,在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是
12
12

(2)从下列图中选择四个拼图板,可拼成一个矩形,正确的选择方案为
①②③④
①②③④
.(填写拼图板的代码即可).

(3)已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.
求证:ED∥FB.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

我们常用各种多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里称为平面密铺).当围绕一点拼在一起的几个多边形的内角和为360°时,就能够拼成一个平面图形.
探究用同一种正多边形进行平面密铺.
例如:如图1,用三个同种类型(大小一样、形状相同)的正六边形地砖可以平面密铺.
(1)请问仅限于同一种类型的多边形进行密铺,哪几种能平面密铺?
①②
①②
(填序号);
①正三角形    ②正四边形     ③正五边形     ④正八边形
探究用两种边长相等的正多边形进行平面密铺.
例如:如图2,二个正三角形和二个正六边形可以平面密铺.
(2)限用两种边长相等的正多边形进行平面密铺,以下哪几种是可行的?
ABE
ABE

A.正三角形和正方形      B.正方形和正八边形         C.正方形和正五边形
D.正八边形和正六边形    E.正三角形和正十二边形    F.正三角形和正五边形
(3)继续推广到用三种不同的正多边形进行平面密铺,请写出符合题意的不同组合.
例如:①正三角形、正方形、正六边形;
②正三角形、正九边形、正十八边形;
正三角形、正四边形,正十二边形
正三角形、正四边形,正十二边形

正三角形,正十边形,正十五边形
正三角形,正十边形,正十五边形

(4)如果用形状,大小相同的如图3方格纸中的三角形,能进行平面密铺吗?若能,请在方格纸中画出密铺的设计图.

查看答案和解析>>

同步练习册答案