精英家教网 > 初中数学 > 题目详情
在如图所示的平面直角坐标系中,描出下面各点:A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(5,3),F(-1,-3),然后回答问题:
(1)将点C向左平移6个单位,它会与点
(-3,-5)
(-3,-5)
重合;
(2)连接BC,FD,则线段BC,FD关于
y
y
轴对称;
(3)连接AE,则线段AE与坐标轴的位置关系是:AE
x轴,AE
y轴;
(4)若有一个点到x轴的距离是2,到y轴的距离是1,则这个点的坐标是
(1,2),(-1,2),(1,-2),(-1,-2)
(1,2),(-1,2),(1,-2),(-1,-2)
分析:(1)根据点平移的性质得出,点C向左平移6个单位,纵坐标不变,横坐标减6即可得出答案;
(2)连接BC,FD,则线段BC,FD关于y轴对称,
(3)根据图象判断线段AE与坐标轴的位置关系即可;
(4)由题意点P到x的距离即为该点的纵坐标的绝对值,到y轴的距离即为点的横坐标的绝对值.
解答:解:(1)将点C向左平移6个单位,它会与点D(-3,-5)重合;
(2)连接BC,FD,则线段BC,FD关于y轴对称;
(3)连接AE,则线段AE与坐标轴的位置关系是:AE∥x轴,AE⊥y轴;
(4)若有一个点到x轴的距离是2,到y轴的距离是1,则这个点的坐标是(1,2),(-1,2),(1,-2),(-1,-2).
故答案为:(1)D(-3,-5);(2)y;(3)⊥,∥;(4)(1,2),(-1,2),(1,-2),(-1,-2).
点评:此题主要考查了坐标与图形的性质,通过观察和分析,该题是点到数轴距离转移到坐标的问题是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、格点△ABC在如图所示的平面直角坐标系中,点B的坐标为(1,1).
(1)画出△ABC向左平移3的单位长度的图形△A1B1C1,再以原点O为位似中心,将△A1B1C1放大到两倍(即新图与原图的相似比为2),在所给的方格图中画出所得的图形△A2B2C2
(2)点A1的坐标为
(-1,3)
,在△A1B1C1内有一点M(a,b),则点M在△A2B2C2中的对应点N的坐标为
(2a,2b)或(-2a,-2b)
.(横纵坐标可用含a、b的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

22、(1)在如图所示的平面直角坐标系中,先画出△OAB关于y轴对称的图形,再画出△OAB绕点O旋转180°后得到的图形.
(2)先阅读后作答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:
(2a+b)(a+b)=2a2+3ab+b2,就可以用图1的面积关系来说明.
①根据图2写出一个等式
(a+2b)(2a+b)=2a2+5ab+2b2

②已知等式:(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、在如图所示的平面直角坐标系中,描出点A(-2,1),B(3,1),C(-2,-2),D(3,-2)四个点.
(1)线段AB、CD有什么关系?并说明理由;
(2)顺次连接A、B、C、D四点组成的图形,你认为它像什么?请写出一个具体名称?

查看答案和解析>>

科目:初中数学 来源: 题型:

11、△ABC在如图所示的平面直角坐标系中.
(1)画出△ABC关于原点对称的△A1B1C1
(2)画出△A1B1C1关于y轴对称的△A2B2C2
(3)请直接写出△AB2A1的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

Rt△ABC在如图所示的平面直角坐标系中.
(1)画出△ABC关于y轴对称的△A1B1C1
(2)画出将△ABC绕点O顺时针旋转90°得到的△A2B2C2
(3)写出点B1、A2的坐标.

查看答案和解析>>

同步练习册答案