精英家教网 > 初中数学 > 题目详情

如图,是用硬纸版作成的两个小直角三角形和一个大直角三角形,两个小直角三角形直角边长分别为a和b,斜边为c,大直角三角形直角边都为c,请你动动脑筋,将它们拼成一个能证明勾股定理的图形.
(1)画出所拼图形的示意图,说出图形的名称.
(2)用这个图形证明勾股定理.

解:(1)如图所示,这是一个梯形

(2)证明:如图

∵S梯形ABCD=S△ABE+S△AED+S△ECD

∴(a+b)2=ab+c2+ab,
a2+2ab+b2=2ab+c2
∴a2+b2=c2
分析:(1)可拼一梯形,使其一腰长为a+b,上底为a,下底为b,图(2)放在中间适当的位置;
(2)由该梯形的面积为三个三角形的面积和,可证明勾股定理.
点评:此题考查的是勾股定理的证明,利用梯形和三角形的面积公式可证明.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,是用硬纸版作成的两个小直角三角形和一个大直角三角形,两个小直角三角形直角边长分别为a和b,斜边为c,大直角三角形直角边都为c,请你动动脑筋,将它们拼成一个能证明勾股定理的图形.
(1)画出所拼图形的示意图,说出图形的名称.
(2)用这个图形证明勾股定理.
精英家教网

查看答案和解析>>

同步练习册答案