精英家教网 > 初中数学 > 题目详情
对称轴是y轴且过点A(1,3)、点B(-2,-6)的抛物线的解析式为
 
分析:由二次函数图象上点的坐标特征,将点A(1,3)、点B(-2,-6)代入抛物线的方程y=ax2+bx+c(a≠0),利用待定系数法求该抛物线的解析式即可.
解答:解:设该抛物线方程为:y=ax2+bx+c(a≠0);
∵该抛物线的对称轴是y轴,
∴x=-
b
2a
=0,
∴b=0;①
又∵抛物线过点A(1,3)、点B(-2,-6),
∴3=a+b+c,②
-6=4a-2b+c,③
由①②③,解得,
a=-3;b=0,c=6,
∴该抛物线的解析式是:y=-3x2+6.
故答案为y=-3x2+6.
点评:本题考查了利用待定系数法求二次函数的解析式.解答该题的关键是根据已知条件“该抛物线的对称轴是y轴”推知x=-
b
2a
=0.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是(-
b
2a
4ac-b2
4a
)
,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的解析式:
伴随抛物线的解析式
 
,伴随直线的解析式
 

(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3,则这条抛物线的解析式是
 

(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;
(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线L:y=ax2+bx+c(其中a,b,c都不等于0),它的顶点坐标P(-
b
2a
4ac-b2
4a
),与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.已知有一抛物线y=-2x2+4x+1,求它的伴随直线和伴随抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是(-
b
2a
4ac-b2
4a
),与y
轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.
(1)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;
(2)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的解析式:
伴随抛物线的解析式
 

伴随直线的解析式
 

(3)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3,则这条抛物线的解析式是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线l:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是(-
b
2a
4ac-b2
4a
),与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线l的伴随抛物线,直线PM为l的伴随直线.
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的解析式:伴随抛物线的解析式
y=-2x2+1
y=-2x2+1
,伴随直线的解析式
y=-2x+1
y=-2x+1

(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3,则这条抛物线的解析式是
y=x2-2x-3
y=x2-2x-3

(3)求抛物线l:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式.

查看答案和解析>>

同步练习册答案