精英家教网 > 初中数学 > 题目详情

如图,抛物线的顶点为A(-3,-3),此抛物线交x轴于O、B两点.
(1)求此抛物线的解析式;
(2)求△AOB的面积;
(3)若抛物线上另一点P满足S△POB=S△AOB,请求出点P的坐标.

解:(1)设抛物线的解析式为y=a(x+3)2-3,
把(0,0)代入得a×32-3=0,解得a=
所以此抛物线的解析式为y=(x+3)2-3;
(2)∵抛物线的对称轴为直线x=-3,
∴B点坐标为(-6,0),
∴△AOB的面积=×6×3=9;
(3)设P点坐标为(x,y),
∵S△POB=S△AOB
|y|×6=9,
解得y=3或y=-3(舍去),
(x+3)2-3=3,
解得x1=3-3,x2=-3-3,
∴P点坐标为(3-3,3),(-3-3,3).
分析:(1)设抛物线的解析式为y=a(x+3)2-3,然后把原点坐标代入求出a即可;
(2)根据抛物线的对称性确定B点坐标,然后根据三角形的面积公式求解;
(3)设P点坐标为(x,y),根据S△POB=S△AOB可计算出y,然后利用二次函数的解析式计算对应的x的值,从而得到P点坐标.
点评:本题考查了待定系数法求二次函数解析式:二次函数的解析式有三种常见形式:一般式:y=ax2+bx+c(a,b,c是常数,a≠0);顶点式:y=a(x-h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标;交点式:y=a(x-x1)(x-x2)(a,b,c是常数,a≠0).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,抛物线的顶点为P(1,0),一条直线与抛物线相交于A(2,1),B(-
12
,m
)两精英家教网点.
(1)求抛物线和直线AB的解析式;
(2)若M为线段AB上的动点,过M作MN∥y轴,交抛物线于点N,连接NP、AP,试探究四边形MNPA能否为梯形?若能,求出此点M的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,抛物线的顶点为A(1,-4),且过点B(3,0).
(1)求该抛物线的解析式;
(2)将该抛物线向右平移几个单位,可使平移后的抛物线经过原点?并直接写出平移后抛物线与x轴的另一个交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河南)如图,抛物线的顶点为P(-2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,-2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为
12
12

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•峨眉山市二模)已知,如图,抛物线的顶点为C(1,-2),直线y=kx+m与抛物线交于A、B两点,其中OA=3,B点在y轴上.点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.
(1)求直线AB的解析式;
(2)设点P的横坐标为x,求点E坐标(用含x的代数式表示);
(3)点D是直线AB与这条抛物线对称轴的交点,是否存在点P,使得以点P、E、D为顶点的三角形与△AOB相似?若存在,请求出点P的坐标;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鄂尔多斯)如图,抛物线的顶点为C(-1,-1),且经过点A、点B和坐标原点O,点B的横坐标为-3.
(1)求抛物线的解析式;
(2)若点D为抛物线上的一点,点E为对称轴上的一点,且以点A、O、D、E为
顶点的四边形为平行四边形,请直接写出点D的坐标;
(3)若点P是抛物线第一象限上的一个动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案