精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,∠C=90°,AC+BC=9,点O是斜边AB上一点,以O为圆心2为半径的圆分别与AC、BC相切于点D、E。

(1)求AC、BC的长;
(2)若AC=3,连接BD,求图中阴影部分的面积(取3.14)。

解:(1)连接OD、OE,

∵⊙O切BC于E,切AC于D,∠C=90°,∴∠ADO=∠BEO=90°,∠ODC=∠C=∠OEC=90°。
∵OE=OD=2,∴四边形CDOE是正方形。
∴CE=CD=OD=OE=2,∠DOE=90°。
设AD=x,
∵AC+BC=9,∴
∵∠OEB=∠C=90°,∴OE∥AC。
∴∠EOB=∠A。
∴△OEB∽△ADO。
,即,解得,x=1或4。
∴AC=3,BC=6或AC=6,BC=3。
(2)∵AC=3,AD=3-1=2,BC=6,
∴阴影部分的面积

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,在矩形ABCD中,AB=4,AD=10.一把三角尺的直角顶点P在AD上滑动时(点P与A、D不重合),一直角边始终经过点C,另一直角边与AB交于点E.

(1)证明△DPC∽△AEP;
(2)当∠CPD=30°时,求AE的长;
(3)是否存在这样的点P,使△DPC的周长等于△AEP周长的倍?若存在,求出DP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0).将矩形OABC绕点O按顺时针方向旋转135º,得到矩形EFGH(点E与O重合).

(1)若GH交y轴于点M,则∠FOM=     ,OM=      
(2)将矩形EFGH沿y轴向上平移t个单位.
①直线GH与x轴交于点D,若AD∥BO,求t的值;
②若矩形EFGH与矩形OABC重叠部分的面积为S个平方单位,试求当0<t≤4-2时,S与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,矩形AOBC的边长为AO=6,AC=8,
(1)如图①,E是OB的中点,将△AOE沿AE折叠后得到△AFE,点F在矩形AOBC内部,延长AF交BC于点G.求点G的坐标;

(2)定义:若以不在同一直线上的三点中的一点为圆心的圆恰好过另外两个点,这样的圆叫做黄金圆.如图②,动点P以每秒2个单位的速度由点C向点A沿线段CA运动,同时点Q以每秒4个单位的速度由点O向点C沿线段OC运动;求:当 PQC三点恰好构成黄金圆时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知,如图,ABCD中,AD=3cm,CD=1cm,∠B=45°,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QP交BA的延长线于点M,过M作MN⊥BC,垂足是N,设运动时间为t(s)(0<t<1),解答下列问题:

(1)当t为何值时,四边形AQDM是平行四边形?
(2)设四边形ANPM的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使四边形ANPM的面积是ABCD面积的一半,若存在,求出相应的t值,若不存在,说明理由
(4)连接AC,是否存在某一时刻t,使NP与AC的交点把线段AC分成的两部分?若存在,求出相应的t值,若不存在,说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知AB⊥BD,CD⊥BD

(1)若AB=9,CD=4,BD=10,请问在BD上是否存在P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?若存在,求BP的长;若不存在,请说明理由;
(2)若AB=9,CD=4,BD=12,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求BP的长;
(3)若AB=9,CD=4,BD=15,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求BP的长;
(4)若AB=m,CD=n,BD=l,请问m,n,l满足什么关系时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的一个P点?两个P点?三个P点?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在Rt△ABC,∠C=90°,D为AB边上一点,点M、N分别在BC、AC边上,且DM⊥DN.作MF⊥AB于点F,NE⊥AB于点E.

(1)特殊验证:如图1,若AC=BC,且D为AB中点,求证:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC.
①如图2,若D为AB中点,(1)中的两个结论有一个仍成立,请指出并加以证明;
②如图3,若BD=kAD,条件中“点M在BC边上”改为“点M在线段CB的延长线上”,其它条件不变,请探究AE与DF的数量关系并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图中的几何体的主视图是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,由4个大小相同的正方体组合而成的几何体,其俯视图是(  )

A.B.C.D.

查看答案和解析>>

同步练习册答案