精英家教网 > 初中数学 > 题目详情
精英家教网如图,边长为a的正方形ABCD和边长为b的正方形BEFG排放在一起,O1和O2分别是两个正方形的中心,则阴影部分的面积为
 
,线段O1O2的长为
 
分析:阴影部分的面积可以看成两个三角形面积之和,所以求2个三角形面积即可;线段O1O2的长根据勾股定理求解.
解答:精英家教网解:做O1H∥AE,使O2H⊥O1H,交BG于P,K点,
(1)BP=
1
2
a

又∵O2H⊥HO1
∴KP∥HO2
∴△PKO1∽△HO2O1
KP
HO2
=
PO1
HO1
=
a
a+b

KP=
a
a+b
×
b-a
2
=
ab-a2
2(a+b)

阴影部分的面积=
1
2
×BK×(
a+b
2
)=
1
2
×[
a
2
+
ab-a2
2(a+b)
a+b
2

=
2ab
8
=
ab
4


(2)HO1=
a+b
2
,HO2=
b-a
2

根据勾股定理O1O2=
HO12+HO22

=
a2+b2
2

=
1
2
2(a2b2)

故答案为:
ab
4
1
2
2(a2b2)
点评:本题考查的相似三角形的证明即对应边比例相等的性质,三角形面积的计算,考查了根据勾股定理计算直角三角形斜边的应用,解决本题的关键是构建直角三角形HO1O2
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,边长为
π2
的正△ABC,点A与原点O重合,若将该正三角形沿数轴正方向翻滚一周,点A恰好与数轴上的点A′重合,则点A′对应的实数是
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图将边长为1的正方形OAPB沿轴正方向连续翻转2006次,点P依次落在点,……的位置,则的横坐标=_________.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年新人教版九年级(上)期中数学试卷(7)(解析版) 题型:解答题

如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案