【题目】阅读理解:给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的一半,则这个矩形是给定矩形的“减半”矩形.如图,矩形
是矩形
的“减半”矩形.
请你解决下列问题:
![]()
(1)当矩形的长和宽分别为
,
时,它是否存在“减半”矩形?请作出判断,并说明理由.
(2)边长为
的正方形存在“减半”正方形吗?如果存在,求出“减半”正方形的边长;如果不存在,请说明理由.
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,对角线AC和BD相交于点O,AC=10,BD=4,动点P在边AB上运动,以点O为圆心,OP为半径作⊙O,CQ切⊙O于点Q,则在点P运动过程中,CQ的长的最大值为_______.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点
在
轴正半轴上,
轴,点
的横坐标都是
,且
,点
在
上,若反比例函数
的图象经过点
,且
.
![]()
(1)求点
坐标;
(2)将
沿着
折叠,设顶点
的对称点为
,试判断点
是否恰好落在直线
上,为什么.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】取三张形状大小一样,质地完全的相同卡片,在三张卡片上分别写上“李明、王强、孙伟”这三个同学的名字,然后将三张卡片放入一个不透明的盒子里.
(1)林老师从盒子中任取一张,求取到写有李明名字的卡片概率是多少?
(2)林老师从盒子中取出一张卡片,记下名字后放回,再从盒子中取出第二张卡片,记下名字.用列表或画树形图列出林老师取到的卡片的所有可能情况,并求出两次都取到写有李明名字的卡片的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在屋楼崮西侧一个坡度(或坡比)
的山坡
上发现有一棵古树
.测得古树底端
到山脚点
的距离
米,在距山脚点
水平距离
米的点
处,测得古树顶端
的仰角
(古树
与山坡
的剖面、点
在同一平面上,古树
与直线
垂直),则古树
的高度约为
( )
![]()
A.
米B.
米C.
米D.
米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在坐标平面内,△ABC的顶点位置如图所示.
![]()
(1)将△ABC作平移交换(x,y)→(x+2,y-3)得到
,画出
.
(2)以点O为位似中心缩小
得到
,使
与
的相似比为1:2,且点A与其对应点
位于点O的两侧,画出
.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A坐标为(-8,0),点B坐标为(0,6),⊙O的半径为4(O为坐标原点),点C是⊙O上一动点,过点B作直线AC的垂线BP,P为垂足.点C在⊙O上运动一周,则点P运动的路径长等于________.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=
x2+
x﹣4与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
![]()
(1)连接BC,P是线段BC上方抛物线上的一动点,过点P作PH⊥BC于点H,当PH长度最大时,在△APB内部有一点M,连接AM、BM、PM,求AM+
BM+PM的最小值.
(2)若点D是OC的中点,将抛物线y=
x2+
x﹣4沿射线AD方向平移
个单位得到新抛物线y′,C′是抛物线y′上与C对应的点,抛物线y'的对称轴上有一动点N,在平面直角坐标系中是否存在一点S,使得C′、N、B、S为顶点的四边形是矩形?若存在,请直接写出点S的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形
中,
的顶点
,
分别在
,
边上,高
与正方形的边长相等,连接
分别交
,
于点
,
,下列说法:①
;②连接
,
,则
为直角三角形;③
;④若
,
,则
的长为
,其中正确结论的个数是( )
![]()
A.4B.3C.2D.1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com