【题目】在横线上完成下面的证明,并在括号内注明理由.
已知:如图,∠ABC+∠BGD=180°,∠1=∠2.
求证:EF∥DB.
证明:∵∠ABC+∠BGD=180°,(已知)
∴ .( )
∴∠1=∠3.( )
又∵∠1=∠2,(已知)
∴ .( )
∴EF∥DB.( )
![]()
科目:初中数学 来源: 题型:
【题目】如图,△ABC在直角坐标系中,
(1)请写出△ABC各点的坐标.
(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出 A′、B′、C′的坐标,并在图中画出平移后图形.
(3)求出三角形ABC的面积.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.
![]()
(1)被随机抽取的学生共有多少名?
(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;
(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD交于点F.
(1)如图1,若AE、CD为△ABC的角平分线:
①求∠AFD的度数;
②若AD=3,CE=2,求AC的长;
(2)如图2,若∠EAC=∠DCA=30°,求证:AD=CE.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,
中
,其中
;
(1)求线段
的长(用
和
的代数式表示);
(2)如图1,若
,点
在
上,点
在
上,点
到
和BC的距离相等,
,连接
,求
的长;
(3)如图2,若
为
的中点,
,点
分别在线段
上,且
,连接
,
和
,求EF的值;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中 过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.![]()
(1)求证:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=
,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】课外兴趣小组活动时,老师提出了如下问题:
(1)如图1,
中,若
,
,求
边上的中线
的取值范围.小明在组内经过合作交流,得到了如下的解决方法:将
绕点
逆时针旋转
得到
,把
、
、
集中在
中,利用三角形的三边关系可得
,则
;
(2)问题解决:受到(1)的启发,请你证明下面命题:如图2,在
中,
是
边上的中点,
,
交
于点
,
交
于点
,连接
.
①求证:
;
②如图3,若
,探索线段
、
、
之间的等量关系,并加以证明.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】类比思想就是根据已经学习过的知识,类比探究新知识的思想方法.我们在探究矩形、菱形、正方形等问题中的数量关系时,经常用到类比思想.某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在
中,
点
为直线
上一动点(点
不与
重合),以
为边在
右侧作正方形
连接
.
(1)(观察猜想)如图①,当点
在线段
上时;
①
与
的位置关系为: ;
②
之间的数量关系为: ;(将结论直接写在横线上)
(2)(数学思考)如图②,当点
在线段
的延长线上时,结论①②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;
(3)(拓展延伸)如图③,当点
在线段
的延长线上时,延长
交
于点
,连接
.若已知
请直接写出
的长.(提示: .过
作
于
过
作
于
于
)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com