精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠ABC=90°,在AB、AC上分别找点E、F,使AE=AF,将△AFE绕点A顺时精英家教网针方向旋转,EF的中点O恰好落在AB的中点,延长AF交BC于D,连接BE.
(1)四边形BDFE是什么特殊四边形?说明理由.
(2)是否存在Rt△ABC中,使得图中四边形BDFE为菱形?若不存在,说明理由;若存在.求出此时Rt△ABC的面积与△AFE面积的倍数关系.
分析:(1)由于AE=AF,且O是EF中点,根据等腰三角形三线合一的性质知:AO⊥EF,即FO∥BD,从而证得OF是△ABD的中位线,由此可得BD=2OF=EF,那么BD、EF平行且相等,根据一组对边平行且相等的四边形是平行四边形即可判断出四边形BDFE的形状.
(2)当四边形BDFE是菱形时,BD=FD,即AF=2BD,由此可得∠FAO=30°,∠BAC=∠EAF=60°;易证得△FOA∽△ABC,首先求出FO、OA即FO、AB的比例关系,即可得到△AFO、△ABC的面积比,进而可得到△AEF、△ABC的面积比.
解答:解:(1)四边形BDFE是平行四边形;
理由:∵AE=AF,且O是EF中点,
∴AO⊥EF,即EF∥BD;
∵O是AB中点,
∴OF是△ABD的中位线,即BD=2OF=EF,
∴BD、EF平行且相等,
∴四边形BDFE是平行四边形.

(2)若四边形BDFE是菱形,则DF=BD,即AD=2BD,
∴∠BAD=30°,∠BAC=∠EAF=60°;
∵∠FAO=∠C=30°,∠FOA=∠ABC=90°,
∴△FOA∽△ABC,
在Rt△AOF中,∠FAO=30°,则AO=
3
OF,即AB=2
3
OF;
∴S△ABC=(2
3
2S△FOC=12S△FOC
又∵S△FAE=2S△FOC
∴S△ABC=6S△FAE
点评:此题主要考查的是旋转的性质、三角形中位线定理、平行四边形的判定、菱形的性质以及相似三角形的判定和性质,难度中等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案