【题目】某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价
(万元)与产量x(吨)之间的关系如图所示
.已知草莓的产销投入总成本
(万元)与产量x
(吨)之间满足
.
(1)直接写出草莓销售单价
(万元)与产量
(吨)之间的函数关系式;
(2)求该合作社所获利润
(万元)与产量
(吨)之间的函数关系式;
(3)为提高农民种植草莓的积极性,合作社决定按
万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润
(万元)不低于
万元,产量至少要达到多少吨?
![]()
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=
交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.
(1)求双曲线的解析式;
(2)求点C的坐标,并直接写出y1<y2时x的取值范围.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).
(1)画出△ABC关于x轴对称的△A1B1C1;
(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;
(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O为锐角△ABC的外接圆,半径为5.
(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);
(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A(-2,3)关于y轴的对称点为点B,连接AB,反比例函数y=
(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点.
(1)求k的值;
(2)若△ABP的面积等于2,求点P坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为
轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=24 m,小明和小华的身高都是1.6 m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2 m和1 m,那么塔高AB为________ m.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线
与
轴交于点
,与
轴交于点
,抛物线
经过
两点.
(1)求这个二次函数的表达式;
(2)若
是直线
上方抛物线上一点;
①当
的面积最大时,求点
的坐标;
②在①的条件下,点
关于抛物线对称轴的对称点为
,在直线
上是否存在点
,使得直线
与直线
的夹角是
的两倍,若存在,直接写出点
的坐标,若不存在,请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com