精英家教网 > 初中数学 > 题目详情

下列比较的大小关系正确的是

[  ]

A.
B.
C.
D.
答案:A
解析:

将根号外的因式移到根号内,再进行比较


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)
①12
21,②23
32,③34
43
④45
54,⑤56
65,…
(2)由(1)可以猜测nn+1与(n+1)n(n为正整数)的大小关系:当n
≤2
时,nn+1<(n+1)n;当n
≥3
时,nn+1>(n+1)n
(3)根据上面的猜想,可以知道:20082009
20092008

查看答案和解析>>

科目:初中数学 来源: 题型:

1、(试比较20062007与20072006的大小.为了解决这个问题,写出它的一般形式,即比较nn+1和(n+1)n的大小(为正整数),从分析n=1、2、3、…这些简单问题入手,从中发现规律,经过归纳、猜想出结论:
(1)在横线上填写“<”、“>”、“=”号:
12
21,23
32,34
43,45
54,56
65,…
(2)从上面的结果经过归纳,可以猜想出nn+1和(n+1)n的大小关系是:
当n≤
2
时,nn+1
(n+1)n
当n>
2
时,nn+1
(n+1)n
(3)根据上面猜想得出的结论试比较下列两个数的大小:20062007
20072006

查看答案和解析>>

科目:初中数学 来源: 题型:

17、你能20082007比较与20072008的大小吗?
为了解决这个问题,我们首先写出它的一般形式,即比较nn+1与(n+1)n的大小(n是正整数),然后我们从分析n=1,n=2,n=3…中发现规律,经归纳、猜想得出结论
(1)通过计算,比较下列各组中两数的大小:(在横线上填写“>”“=”“<”)
①12
21,②23
32;③34
43;④45
54;⑤56
65
(2)从第(1)题的结果中,经过归纳,可以猜想出nn+1与(n+1)n的大小关系是
当n=1或n=2时,nn+1<(n+1)n;当n≥3时,nn+1>(n+1)n

(3)根据以上归纳.猜想得到的一般结论,试比较下列两数的大小:20082007与20072008
20072008>20082007

查看答案和解析>>

科目:初中数学 来源: 题型:

27、从“特殊到一般”是数学上常用的一种思维方法.例如,“你会比较20112012与20122011的大小吗?”我们可以采用如下的方法:
(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)
①12
21,②23
32,③34
43,④45
54,⑤56
65,…
(2)由(1)可以猜测nn+1与(n+1) n (n为正整数)的大小关系:
当n
≤2
时,nn+1<(n+1)n;当n
>2
时,nn+1>(n+1)n
(3)根据上面的猜想,可以知道:20112012
20122011(填“>”、“<”或“=”).

查看答案和解析>>

科目:初中数学 来源: 题型:

问题:能比较两个数20092010和20102009的大小吗?为了解决这个问题,我们先把它抽象成数学问题,写出它的一般彤式,即比较nn+1与(n+1)n的大小(n是正整数),然后,我们从分析n=1,n=2,n=3,…这些简单情形入手,从中发现规律,经过归纳,猜想出结论.
(1)通过计算,比较下列各组中两个数的大小(在空格内填写“>”“=”或“<”).
①12
21
②23
32
③34
43
④45
54
⑤56
65
(2)从第(1)题的结果经过归纳,可猜想出nn+1与(n+1)n的大小关系是
当n<3时,nn+1<(n+1)n,当n≥3时,nn+1>(n+1)n
当n<3时,nn+1<(n+1)n,当n≥3时,nn+1>(n+1)n

(3)根据上面的归纳猜想得到的一般结论,试比较下面两个数的大小:20092010
20102009

查看答案和解析>>

同步练习册答案