【题目】如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.
(1)求证:CD是⊙O的切线;
(2)求证:CE=CF;
(3)若BD=1,CD=
,求弦AC的长.
![]()
【答案】(1)见解析;(2)见解析;(3)![]()
【解析】
(1)连接OC,可证得∠CAD=∠BCD,由∠CAD+∠ABC=90°,可得出∠OCD=90°,即结论得证;
(2)证明△ABC≌△AFC可得CB=CF,又CB=CE,则CE=CF;
(3)证明△DCB∽△DAC,可求出DA的长,求出AB长,设BC=a,AC=
a,则由勾股定理可得AC的长.
解:(1)连接OC,
![]()
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠CAD+∠ABC=90°,
∵CE=CB,
∴∠CAE=∠CAB,
∵∠BCD=∠CAE,
∴∠CAB=∠BCD,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠OCB+∠BCD=90°,
∴∠OCD=90°,
∴CD是⊙O的切线;
(2)∵∠BAC=∠CAE,∠ACB=∠ACF=90°,AC=AC,
∴△ABC≌△AFC(ASA),
∴CB=CF,
又∵CB=CE,
∴CE=CF;
(3)∵∠BCD=∠CAD,∠ADC=∠CDB,
∴△DCB∽△DAC,
∴
,
∴
,
∴DA=2,
∴AB=AD﹣BD=2﹣1=1,
设BC=a,AC=
a,由勾股定理可得:
,
解得:a=
,
∴
.
科目:初中数学 来源: 题型:
【题目】如图,抛物线
交
轴于
两点,交
轴于点
直线
经过点
.
![]()
(1)求抛物线的解析式;
(2)点
是直线
下方的抛物线上一动点,过点
作
轴于点
交直线
于点
设点
的横坐标为
若
求
的值;
(3)
是第一象限对称轴右侧抛物线上的一点,连接
抛物线的对称轴上是否存在点
.使得
与
相似,且
为直角,若存在,请直接写出点
的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线y=
x与BC边相交于D.
(1)求点D的坐标:
(2)若抛物线y=ax
+bx经过D、A两点,试确定此抛物线的表达式:
(3)P为x轴上方(2)题中的抛物线上一点,求△POA面积的最大值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为坐标原点,ABCD的边AB在x轴上,顶点D在y轴的正半轴上,点C在第一象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处,点B恰好为OE的中点,DE与BC交于点F.若y
(k≠0)图象经过点C,且S△BEF=1,则k的值为________.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线
交
轴于点
交
轴于点
,直线
经过点
.
![]()
(1)求抛物线的解析式.
(2)点
是抛物线上一动点,设点
的横坐标为
.
①若点
在直线
的下方,当
的面积最大时,求
的值;
②若
是以
为底的等腰三角形,请直接写出
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正六边形ABCDEF的边长1,请仅用无刻度的直尺按要求画图.
(1)在图1中,画出一条长度为
的线段;
(2)在图2中,画出一条长度为
的线段,并说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com