精英家教网 > 初中数学 > 题目详情
(2004•济南)如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F.
(1)求证:DE=DF;
(2)只添加一个条件,使四边形EDFA是正方形.请你至少写出两种不同的添加方法.(不另外添加辅助线,无需证明)

【答案】分析:(1)要证DE=DF,就要证△DEB≌△DFC,根据已知条件可达到目的;
(2)解决此题的关键是先假设四边形EDFA是正方形,根据其判定即可添加一个条件.
解答:(1)证明:∵DE⊥AB,DF⊥AC,
∴∠DEB=∠DFC=90°.
∵AB=AC,
∴∠B=∠C.
又∵DB=DC,△DEB≌△DFC(AAS),
∴DE=DF.

(2)解:添加∠A=90°.
∵四边形AFDE是矩形,
又∵DE=DF,
∴四边形EDFA是正方形.
(方法很多,如∠B=45°或BC=AB或DE⊥DF或F为AC中点或DF∥AB等)
点评:此题考查了两个知识点:全等三角形的判定和正方形的判定.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《一次函数》(03)(解析版) 题型:解答题

(2004•济南)如图,已知直线y=x+3的图象与x、y轴交于A、B两点.直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分.求直线l的解析式.

查看答案和解析>>

科目:初中数学 来源:2004年山东省济南市中考数学试卷(解析版) 题型:解答题

(2004•济南)如图,已知直线y=x+3的图象与x、y轴交于A、B两点.直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分.求直线l的解析式.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《图形的对称》(02)(解析版) 题型:填空题

(2004•济南)如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为    度.

查看答案和解析>>

科目:初中数学 来源:2004年山东省济南市中考数学试卷(解析版) 题型:解答题

(2004•济南)如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c.图(2)是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形.
(1)画出拼成的这个图形的示意图,指出它是什么图形;
(2)用这个图形证明勾股定理;
(3)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请在图(3)中画出拼后的示意图(无需证明).

查看答案和解析>>

科目:初中数学 来源:2004年山东省济南市中考数学试卷(解析版) 题型:填空题

(2004•济南)如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为    度.

查看答案和解析>>

同步练习册答案