精英家教网 > 初中数学 > 题目详情
(2009•泰安)如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD.
(1)求证:BE=AD;
(2)求证:AC是线段ED的垂直平分线;
(3)△DBC是等腰三角形吗?并说明理由.

【答案】分析:(1)把要证明的线段AD和BE放到两个三角形ABD和BCE中即可证明;
(2)根据等腰三角形的三线合一即可证明;
(3)根据(2)中的结论,即可证明CD=BC.
解答:(1)证明:∵∠ABC=90°,BD⊥EC,
∴∠1+∠3=90°,∠2+∠3=90°,
∴∠1=∠2,
在△BAD和△CBE中,

∴△BAD≌△CBE(ASA),
∴AD=BE.

(2)证明:∵E是AB中点,
∴EB=EA,
∵AD=BE,
∴AE=AD,
∵AD∥BC,
∴∠7=∠ACB=45°,
∵∠6=45°,
∴∠6=∠7,
又∵AD=AE,
∴AM⊥DE,且EM=DM,
即AC是线段ED的垂直平分线;

(3)解:△DBC是等腰三角形(CD=BD).
理由如下:
∵由(2)得:CD=CE,由(1)得:CE=BD,
∴CD=BD.
∴△DBC是等腰三角形.
点评:综合运用了全等三角形的性质和判定以及等腰三角形的性质.此类题注意已证明的结论的充分运用.
练习册系列答案
相关习题

科目:初中数学 来源:2011年河南省郑州市新密市兴华公学九年级(下)第一次月考数学试卷(解析版) 题型:解答题

(2009•泰安)如图,△OAB是边长为2的等边三角形,过点A的直线+m与x轴交于点E.
(1)求点E的坐标;
(2)求过A、O、E三点的抛物线解析式;
(3)若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE的面积为S,求S的最大值.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《反比例函数》(01)(解析版) 题型:选择题

(2009•泰安)如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,则双曲线的解析式为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《一次函数》(02)(解析版) 题型:选择题

(2009•泰安)如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,则双曲线的解析式为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2010年山东省泰安市初中学业考试数学样卷(解析版) 题型:选择题

(2009•泰安)如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,则双曲线的解析式为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2010年福建省龙岩市上杭三中九年级(下)第一次月考数学试卷(解析版) 题型:解答题

(2009•泰安)如图,△OAB是边长为2的等边三角形,过点A的直线+m与x轴交于点E.
(1)求点E的坐标;
(2)求过A、O、E三点的抛物线解析式;
(3)若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE的面积为S,求S的最大值.

查看答案和解析>>

同步练习册答案