精英家教网 > 初中数学 > 题目详情
如图,已知平行四边形ABCD,延长AD到E,使DE=AD,连接BE与DC交于O点.
(1)求证:△BOC≌△EOD;
(2)当∠A=
12
∠EOC时,连接BD、CE,求证:四边形BCED为矩形.
分析:(1)根据平行四边形性质得出AD=BC,AD∥BC,推出∠EDO=∠BCO,∠DEO=∠CBO,求出DE=BC,根据ASA推出两三角形全等即可;
(2)求出∠EDO=∠A=
1
2
∠EOC,推出∠ODE=∠OED,推出OD=OE,得出平行四边形BCED,推出CD=BE,根据矩形的判定推出即可.
解答:证明:(1)∵在平行四边形ABCD中,
AD=BC,AD∥BC,
∴∠EDO=∠BCO,∠DEO=∠CBO,
∵DE=AD,
∴DE=BC,
在△BOC和△EOD中
∠OBC=∠OED
BC=DE
∠OCB=∠ODE

∴△BOC≌△EOD(ASA);

(2)∵DE=BC,DE∥BC,
∴四边形BCED是平行四边形,
在平行四边形ABCD中,AB∥DC,
∴∠A=∠ODE,
∵∠A=
1
2
∠EOC,
∴∠ODE=
1
2
∠EOC,
∵∠ODE+∠OED=∠EOC,
∴∠ODE=∠OED,
∴OE=OD,
∵平行四边形BCED中,CD=2OD,BE=2OE,
∴CD=BE,
∴平行四边形BCED为矩形.
点评:本题考查了平行四边形的性质和判定,矩形的判定,平行线的性质,全等三角形的性质和判定,三角形的外角性质等知识点的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知平行四边形DEFG与正方形ABCD有一个公共顶点D,G在CB或其延长线上,A在EF所在直线上,又二次函数y=(m-1)x2-(m-2)x-1(m>0)与x轴的两个交点P、Q的横坐标分别为x1,x2,且x1>0,x2>0,正方形AB精英家教网CD的边长a等于点P,Q间的距离.
(1)求m的取值范围;
(2)求a和四边形DEFG的面积S;
(3)若DEFG的一组邻边长分别等于x1,x2,并设
CGCB
=k
,求sin∠E和k.
((2),(3)的结果都用含m的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知平行四边形ABCD的对角线AC,BD相交于点O,BD绕点O顺时针旋转交AB,DC于E,F.
(1)证明:四边形BFDE是平行四边形;
(2)BD绕点O顺时针旋转
 
度时,平行四边形BFDE为菱形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知平行四边形ABCD中,P是对角线BD上的一点,过P点作MN∥AD,EF∥CD,分别精英家教网交AB、CD、AD、BC于M、N、E、F,设a=PM•PE,b=PN•PF.
(1)请判断a与b的大小关系,并说明理由;
(2)当
BP
PD
=2
时,求
S平行四边形PEAM
S△ABD
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,已知平行四边形ABCD.
(1)用直尺和圆规作出么ABC的平分线BE,交AD的延长线于点E,交DC于点F(保留作图痕迹,不写作法);
(2)求证:△ABE是等腰三角形;
(3)在(1)中所得图形中,除△ABE外,请你写出其他的等腰三角形.(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知平行四边形ABCD,作DE⊥AB,垂足为E,把三角形AED沿AB方向平移AB长个单位长度.
(1)作出平移后的图形;
(2)经过这样的平移后,原来的图形变成了什么图形?
(3)这两个图形的面积相等吗?只需给出答案,不必说明理由.

查看答案和解析>>

同步练习册答案