精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,O为坐标原点,B(5,0),M为等腰梯形OBCD底边OB上一点,OD=BC=2,.

(1)求直线CB的解析式;

(2)求点M的坐标

(3)绕点M顺时针旋转(30,射线交直线CB于点F,设DE=m,BF=n,mn的函数关系式.

 

【解析】(1)通过直角三角形求得C的坐标为,从而求得直线CB的解析式

(2)通过⊿ODM∽⊿BMC,求得M点的坐标

(3)通过M点的坐标进行讨论

 

解:(1)易求得点C的坐标为,∴直线CB的解析式为:…2分

(2)由⊿ODM∽⊿BMC,可得:OD×BC=BM×OM,求得M点的坐标为(1,0)或(4,0)…5分

(3)①当M点坐标为(1,0)时,如图,OM=1,BM=4.

∵DC∥OB,∴∠MDE=∠MCB.

又∵∠DMO=∠MCB,∴∠MDE=MCB。

∵∠DME=∠CMF=α, ∴⊿DME∽⊿CMF

∴CF=2DE.

∵CF=2+n,DE=m,∴2+n=2m,即m=1+(0<n<4); ……………8分

②当M点坐标为(4,0)时,同理可求得m=4-2n(……………10分

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案