
ÏÈÔĶÁ¶ÌÎÄ£¬Ôٻشð¶ÌÎĺóÃæµÄÎÊÌ⣮
Æ½ÃæÄÚÓëÒ»¸ö¶¨µãFºÍÒ»Ìõ¶¨Ö±ÏßlµÄ¾àÀëÏàµÈµÄµãµÄ¹ì¼£½Ð×öÅ×ÎïÏߣ¬µãF½Ð×öÅ×ÎïÏߵĽ¹µã£¬Ö±Ïßl½Ð×öÅ×ÎïÏßµÄ×¼Ïߣ®
ÏÂÃæ¸ù¾ÝÅ×ÎïÏߵ͍Ò壬ÎÒÃÇÀ´ÇóÅ×ÎïÏߵķ½³Ì£®
ÈçÉÏͼ£¬½¨Á¢Ö±½Ç×ø±êϵxoy£¬Ê¹xÖá¾¹ýµãFÇÒ´¹Ö±ÓÚÖ±Ïßl£¬´¹×ãΪK£¬²¢Ê¹ÔµãÓëÏß¶ÎKFµÄÖеãÖØºÏ£®Éè|KF|=p£¨p£¾0£©£¬ÄÇô½¹µãFµÄ×ø±êΪ£¨
£¬0£©£¬×¼ÏßlµÄ·½³ÌΪx=-
£®
ÉèµãM£¨x£¬y£©ÊÇÅ×ÎïÏßÉÏÈÎÒâÒ»µã£¬µãMµ½lµÄ¾àÀëΪd£¬ÓÉÅ×ÎïÏߵ͍Ò壬Å×ÎïÏß¾ÍÊÇÂú×ã|MF|=dµÄµãMµÄ¹ì¼££®
¡ß|MF|=
£¬d=|x+
|¡à
=|x+
|
½«ÉÏʽÁ½±ßƽ·½²¢»¯¼ò£¬µÃy
2=2px£¨p£¾0£©¢Ù
·½³Ì¢Ù½Ð×öÅ×ÎïÏߵıê×¼·½³Ì£¬Ëü±íʾµÄÅ×ÎïÏߵĽ¹µãÔÚxÖáµÄÕý°ëÖáÉÏ£¬×ø±êÊÇ£¨
£¬0£©£¬ËüµÄ×¼Ïß·½³ÌÊÇx=-
£®
Ò»ÌõÅ×ÎïÏߣ¬ÓÉÓÚËüÔÚ×ø±êÆ½ÃæÄÚµÄλÖò»Í¬£¬·½³ÌÒ²²»Í¬£®ËùÒÔÅ×ÎïÏߵıê×¼·½³Ì»¹ÓÐÆäËüµÄ¼¸ÖÖÐÎʽ£ºy
2=-2px£¬x
2=2py£¬x
2=-2py£®ÕâËÄÖÖÅ×ÎïÏߵıê×¼·½³Ì£¬½¹µã×ø±êÒÔ¼°×¼Ïß·½³ÌÁбíÈçÏ£º
| ±ê×¼·½³Ì |
½»µã×ø±ê |
×¼Ïß·½³Ì |
| y2=2px£¨p£¾0£© |
£¨£¬0£© |
x=- |
| y2=-2px£¨p£¾0£© |
£¨-£¬0£© |
x= |
| x2=2py£¨p£¾0£© |
£¨0£¬£© |
y=- |
| x2=-2py£¨p£¾0£© |
£¨0£¬-£© |
y=- |
½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©¢ÙÒÑÖªÅ×ÎïÏߵıê×¼·½³ÌÊÇy
2=8x£¬ÔòËüµÄ½¹µã×ø±êÊÇ
£¬×¼Ïß·½³ÌÊÇ
¢ÚÒÑÖªÅ×ÎïÏߵĽ¹µã×ø±êÊÇF£¨0£¬-6£©£¬ÔòËüµÄ±ê×¼·½³ÌÊÇ
£®
£¨2£©µãMÓëµãF£¨4£¬0£©µÄ¾àÀë±ÈËüµ½Ö±Ïßl£ºx+5=0µÄ¾àÀëС1£¬ÇóµãMµÄ¹ì¼£·½³Ì£®
£¨3£©Ö±Ïß
y=x+b¾¹ýÅ×ÎïÏßy
2=4xµÄ½¹µã£¬ÓëÅ×ÎïÏßÏཻÓÚÁ½µãA¡¢B£¬ÇóÏß¶ÎABµÄ³¤£®