3£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy1=x2-1ÓëxÖá½»ÓÚµãAºÍµãB£¨µãAÔÚµãBµÄÓҲࣩ£¬Å×ÎïÏßy2µÄ½âÎöʽΪy2=$\frac{1}{1-n}$£¨x-n£©2+n-1£¨n¡Ù1£¬Ö±Ïßy3µÄ½âÎöʽΪy3=x-2£®
£¨1£©ÊÔͨ¹ý¼ÆËã˵Ã÷Å×ÎïÏßy2ÓëÖ±Ïßy3¾ù¹ýµãA£»
£¨2£©ÈôÅ×ÎïÏßy2ÓëxÖáµÄÁíÒ»½»µãΪC£¬ÇÒÓÐBC=2AB£¬ÇëÇó³ö´Ëʱy2µÄ½âÎöʽ£»
£¨3£©µ±n¡Ü0ʱ£¬ÒÑÖª¶ÔÓÚxµÄÈÎÒâͬһ¸öÖµ£¬Ëù¶ÔÓ¦Èý¸öº¯ÊýµÄº¯ÊýֵΪy1£¬y2£¬y3£¬Çë»­³öËüÃǵĴóÖÂͼÏóºó²ÂÏëy1£¬y2£¬y3µÄ´óС¹ØÏµ²¢¸ø³öÖ¤Ã÷£®

·ÖÎö £¨1£©¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¹ØÏµ£¬¿ÉµÃAµã×ø±ê£¬¸ù¾Ý×Ô±äÁ¿µÄÖµ£¬¿ÉµÃy2£¬y3µÄÖµ£»
£¨2£©¸ù¾ÝÏàͬµÄº¯ÊýÖµ¶ÔÓ¦µÄ×Ô±äÁ¿¹ØÓÚ¶Ô³ÆÖá¶Ô³Æ£¬¿ÉµÃCµã×ø±ê¸ù¾ÝBCµÄ¾àÀ룬¿ÉµÃnµÄÖµ£¬¸ù¾ÝnµÄÖµ£¬¿ÉµÃy2µÄº¯Êý½âÎöʽ£»
£¨3£©¸ù¾Ý×÷²î·¨±È½Ï£¬¿ÉµÃ¶ÔÓÚÈÎÒâx£¬µ±n¡Ü0ʱ£¬y1Óëy2Óëy3µÄ´óС¹ØÏµ£®

½â´ð ½â£º£¨1£©ÔÚy1=x-1ÖУ¬µ±y1=0ʱ£¬x2-1=0£¬
½âµÃx1=1£¬x2=-1£¬
¡ßµãÔÚBµãµÄÓҲ࣬
¡àAµã×ø±êΪ£¨1£¬0£©£¬
°Ñx=1´úÈëy2=$\frac{1}{1-n}$£¨x-n£©+n-1Óë3=2x-2ÖУ¬
µÃy2=0£¬y3=0£¬
¡àÅ×ÎïÏßy2Óëy3¾ù¹ýAµã£»
£¨2£©ÔÚy2=$\frac{1}{1-n}$£¨x-n£©2+n-1ÖУ¬
Æä¶Ô³ÆÖáΪֱÏßx=n£¬
ÓÉ£¨1£©ÖªÅ×ÎïÏßy2=$\frac{1}{1-n}$£¨x-n£©2+n-1¹ýµãA£¨1£¬0£©£¬
¡àµãCΪ£¨2n-1£¬0£©£¬
BC=2AB£¬AB=2£¬
¡à|2n-1-£¨-1£©|=4£¬
½âµÃ n=2»òn=-2£¬
´Ëʱy2µÄ½âÎöʽΪy2=-£¨x-2£©2+1»òy2=$\frac{1}{3}$£¨x+2£©2-3£»
£¨3£©Èçͼ£º
£¬
¶ÔÓÚÈÎÒâx£¬µ±n¡Ü0ʱ£¬²ÂÏëy1¡Ýy2¡Ý3£¬
ÀíÓÉ£ºy1-y2=x2-1-$\frac{1}{1-n}$£¨x-n£©2-n+1=$\frac{n£¨x-1£©2}{n-1}$£¬
ÓÖ¡ß¡Ü0£¬
¡ày1-y2¡Ý0£¬
¡ày1¡Ýy2£»
ͬÀíy2-y3=$\frac{1}{1-n}$£¨x-n£©2+n-1-2x+2=$\frac{£¨x-1£©^{2}}{1-n}$£¬
ÓÖ¡ß¡Ü0£¬
¡ày2-y3¡Ý0£¬
¡ày2¡Ý¡Ýy3£»
¶ÔÓÚÈÎÒâx£¬µ±n¡Ü0ʱ£¬¾ùÓÐy1¡Ýy2¡Ý3£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬ÀûÓÃÁË×Ô±äÁ¿ÓÚº¯ÊýÖµµÄ¶ÔÓ¦¹ØÏµ£¬ÏàͬµÄº¯ÊýÖµµÄµã¹ØÓÚ¶Ô³ÆÖá¶Ô³Æ£¬Á½µã¼äµÄ¾àÀ빫ʽµÃ³önµÄÖµ£¬ÀûÓÃ×÷²î·¨±È½Ïº¯ÊýÖµµÄ´óС¹ØÏµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÏÂÁÐͼÐÎÖУ¬¼ÈÊÇÖá¶Ô³ÆÍ¼ÐÎÓÖÊÇÖÐÐĶԳÆÍ¼ÐεÄÊÇ£¨¡¡¡¡£©
A£®
    ƽÐÐËıßÐÎ
B£®
     Ô²
C£®
   ÕýÎå±ßÐÎ
D£®
   µÈÑüÈý½ÇÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖª£ºÈçͼ£¬ÔÚ¡÷ABCÖУ¬DÊÇBC±ßÉϵÄÒ»µã£¬Á¬½áAD£¬È¡ADµÄÖеãE£¬¹ýµãA×÷BCµÄƽÐÐÏßÓëCEµÄÑÓ³¤Ïß½»ÓÚµãF£¬Á¬½áDF£®ÇóÖ¤£ºAF=DC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÒÑÖªËıßÐÎABCDÖУ¬AD¡ÎBC£¬µãE£¬F·Ö±ðΪ±ßAB£¬CDµÄÖе㣬Á¬½ÓEF£¬ÒÑÖªAD=4£¬BC=6£¬ÇóEFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖª$\left\{\begin{array}{l}x=2\\ y=1\end{array}$ÊÇ·½³Ì×é$\left\{\begin{array}{l}{ax+by=7¢Ù}\\{ax-by=1¢Ú}\end{array}\right.$µÄ½â£¬Ôòa-bµÄֵΪ£¨¡¡¡¡£©
A£®-2B£®-1C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èçͼ£¬ÔÚ¡ÑOÖУ¬ABÊÇÖ±¾¶£¬µãDÊÇ¡ÑOÉÏÒ»µã£¬µãCÊÇ$\widehat{AD}$µÄÖе㣬CE¡ÍABÓÚµãE£¬¹ýµãDµÄÇÐÏß½»ECµÄÑÓ³¤ÏßÓÚµãG£¬Á¬½ÓAD£¬·Ö±ð½»CE¡¢CBÓÚµãP¡¢Q£¬Á¬½ÓAC£¬¹ØÓÚÏÂÁнáÂÛ£º¢Ù¡ÏBAD=¡ÏABC£»¢ÚGP=GD£»¢ÛµãPÊÇ¡÷ACQµÄÍâÐÄ£¬ÆäÖÐÕýÈ·½áÂÛÊÇ¢Ú¢Û£¨Ö»ÐèÌîдÐòºÅ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªx2+2£¨n+1£©x+4nÊÇÒ»¸ö¹ØÓÚxµÄÍêȫƽ·½Ê½£¬Ôò³£Êýn=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®½â·½³Ì×é$\left\{\begin{array}{l}{x-y=-2}\\{3x+2y=4}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{a-3}{a-2}$¡Â£¨a+2-$\frac{5}{a-2}$£©£¬ÆäÖÐa=$\sqrt{2}$-3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸