精英家教网 > 初中数学 > 题目详情
精英家教网如图,以Rt△ABC的直角边AB为直径作圆O与斜边AC交于点D,E为BC边的中点,连接DE.
(1)DE与⊙O什么位置关系?并说明理由.
(2)连接OE、AE,当△ABC满足什么条件时,四边形AOED是平行四边形?在此条件下,sin∠CAE的值是多少?
分析:(1)可求得∠EDO=90°,即可得到DE是⊙O的切线;
(2)根据平行的性质可得知:∠CAB=45°所以,sin∠CAE=
10
10
解答:精英家教网解:(1)DE与⊙O相切,理由如下:
连接BD,DO(如图1);
∵AB为⊙O直径.
∴∠ADB=90°.
∴△CDB为直角三角形.
∵E为BC中点;
∴DE=
1
2
BC,BE=CE=
1
2
BC,
∴DE=BE.
∴∠EDB=∠EBD.(3分)
∵DO=OB;
∴∠ODB=∠OBD.
∴∠ODB+∠EDB=∠OBD+∠DBE=∠ABC=90°.
即∠EDO=90°.
∴DE与⊙O相切于点D.(3分)

(2)当∠CAB=45°时,四边形AOED是平行四边形.
理由如下:
∵∠ADB=90°,∠CAB=45°;
∴∠DBA=∠CAB=45°.
∵AO=BO;
∴DO⊥AB.
∵DE切⊙O于D;
∴DE⊥DO.
∴DE∥AO.(5分)
可证△DOE≌△BOE,从而∠1=∠2=45°.
∴∠CAO=∠EOB.
∴OE∥AD.
∴四边形AOED为平行四边形.(6分)
作EF⊥AC于F(如图2),设EF=k,可得BE=CE=
2
k,AB=2
2
k,
从而得AE=
10
k.
∴sin∠CAE=
EF
AE
=
k
10
k
=
10
10
.(8分)
点评:主要考查了切线的判定方法和平行四边形的判定及其性质的运用.要掌握这些基本性质才会在综合习题中灵活运用.要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接ED、BD.
(1)求证:△ABC∽△BCD
(2)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以Rt△ABC各边为直径的三个半圆围成两个新月形(阴影部分),已知AC=3cm,BC=4cm.则新月形(阴影部分)的面积和是
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,以Rt△ABC的斜边AB为直径作⊙0,D是BC上的点,且有弧AC=弧CD,连CD、BD,在BD延长线上取一点E,使∠DCE=∠CBD.
(1)求证:CE是⊙0的切线;
(2)若CD=2
5
,DE和CE的长度的比为
1
2
,求⊙O半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC的直角边AC为直径作圆O交斜边AB于点D,若劣弧CD=120°,则
BDAD
=
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•黔南州)如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE.
(1)DE与半圆0是否相切?若相切,请给出证明;若不相切,请说明理由;
(2)若AD、AB的长是方程x2-16x+60=0的两个根,求直角边BC的长.

查看答案和解析>>

同步练习册答案