精英家教网 > 初中数学 > 题目详情
如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在C′的位置,若BC=2.则CC′的长为
2
2
分析:由根据折叠的性质知,CD=C′D,∠ADC′=∠ADC=45°,则可得∠CDC′=90°,又由AD是△ABC的中线,BC=2,即可求得CD的长,然后利用勾股定理即可求得CC′的长.
解答:解:根据折叠的性质知,CD=C′D,∠ADC′=∠ADC=45°,
∴∠CDC′=∠ADC+∠ADC′=90°,
∵AD是△ABC的中线,
∴CD=
1
2
BC=
1
2
×2=1,
∴C′D=CD=1,
∴在Rt△CDC′中,CC′=
CD2+C′D2
=
2

故答案为:
2
点评:此题考查了折叠的性质、三角形中线的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系是解此题的关键,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A′B′C′的位置,则A′D′和B′D′位置关系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AD是△ABC的角平分线,且 AB:AC=3:2,则△ABD与△ACD的面积之比为
3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm.
(1)求△ABD与△ACD的周长之差.
(2)若AB边上的高为2cm,求AC边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为(  )

查看答案和解析>>

同步练习册答案