精英家教网 > 初中数学 > 题目详情
精英家教网如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A′C′D′.
(1)证明△A′AD′≌△CC′B;
(2)若∠ACB=30°,试问当点C'在线段AC上的什么位置时,四边形ABC′D′是菱形,并请说明理由.
分析:(1)根据已知利用SAS判定△A′AD′≌△CC′B;
(2)由已知可推出四边形ABC′D′是平行四边形,只要再证明一组邻边相等即可确定四边形ABC′D′是菱形,由已知可得到BC′=
1
2
AC,AB=
1
2
AC,从而得到AB=BC′,所以四边形ABC′D′是菱形.
解答:(1)证明:∵四边形ABCD是矩形,
△A′C′D′由△ACD平移得到,
∴A′D′=AD=CB,AA′=CC′,A′D′∥AD∥BC.
∴∠D′A′C′=∠BCA.
∴△A′AD′≌△CC′B.

(2)解:当点C′是线段AC的中点时,四边形ABC′D′是菱形.
理由如下:
∵四边形ABCD是矩形,△A′C′D′由△ACD平移得到,
∴C′D′=CD=AB.
由(1)知AD′=C′B.
∴四边形ABC′D′是平行四边形.
在Rt△ABC中,点C′是线段AC的中点,
∴BC′=
1
2
AC.
而∠ACB=30°,
∴AB=
1
2
AC.
∴AB=BC′.
∴四边形ABC′D′是菱形.
点评:本题即考查了全等的判定及菱形的判定,注意对这两个判定定理的准确掌握.考查了学生综合运用数学的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,将矩形ABCD绕点A顺时针旋转90°后,得到矩形AB′C′D′,如果CD=2DA=2,那么CC′=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,将矩形ABCD折叠,AE是折痕,点D恰好落在BC边上的点F处,量得∠BAF=50°,那么∠DEA等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,将矩形ABCD的BC边折起,使点B落在DC上的点F处得折痕AE,若∠DFA为40°,则∠EAF的度数是(  )
A、15°B、20°C、25°D、30°

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,将矩形ABCD沿直线EF对折,点D恰好与BC边上的点H重合,∠GFP=62°,那么∠EHF的度数等于
56
°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将矩形ABCD绕C点顺时针旋转到矩形CEFG,点E在CD上,若AB=8,BC=6,则旋转过程中点A所经过的路径长为
.(结果不取近似值).

查看答案和解析>>

同步练习册答案