精英家教网 > 初中数学 > 题目详情
6、已知:如图,在梯形ABCD中,AD∥BC,AB=CD,E是底边BC的中点,连接AE、DE.
求证:△ADE是等腰三角形.
分析:要证出△ADE是等腰三角形,一般采用证边或证角相等,由此考虑到用三角形全等进行证明.
解答:证明:∵四边形ABCD为梯形,且AB=CD,
∴ABCD是等腰梯形,
∴∠B=∠C,AB=CD.
∵E是BC中点,
∴BE=CE.
∴△ABE≌△DCE.
∴AE=DE.
∴△AED是等腰三角形.
点评:此题主要利用等腰梯形的性质及三角形全等的判定来证明等腰三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB=DC,∠D=120°,对角线CA平分∠BCD,且梯形的周长为20,求AC的长及梯形面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,∠B=45°,∠BAC=105°,AD=CD=4,
求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AB∥CD,AC⊥BC,AC平分∠DAB,点E为AC的中点.求证:DE=
12
BC

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闵行区二模)已知:如图,在梯形ABCD中,AD∥BC,AB=CD,BC=2AD.DE⊥BC,垂足为点F,且F是DE的中点,联结AE,交边BC于点G.
(1)求证:四边形ABGD是平行四边形;
(2)如果AD=
2
AB
,求证:四边形DGEC是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在梯形ABCD中,AD∥BC,CD=10cm,∠B=45度,∠C=30度,AD=5cm.
    求:(1)AB的长;
        (2)梯形ABCD的面积.

查看答案和解析>>

同步练习册答案