(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy(如图1),一次函数
的图 像与y轴交于点A,点M在正比例函数
的图像上,且MO=MA.二次函数y=x2+bx+c的图像经过点A、M.
(1)求线段AM的长;
(2)求这个二次函数的解析式;
(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图像上,点D在一次函数
的图像上,且四边形ABCD是菱形,求点C的坐标.
(本题满分12分,每小题满分各4分)
[解] (1) 根据两点之间距离公式,设M(a,
a),由|MO |=| MA |, 解得:a=1,则M(1,
),
即AM=
。
(2) ∵ A(0, 3),∴ c=3,将点M代入y=x2+bx+3,解得:b= -
,即:y=x2-
x+3。
(3) C(2, 2) (根据以AC、BD为对角线的菱形)。注意:A、B、C、D是按顺序的。
[解] 设B(0,m) (m<3),C(n,n2-
n+3),D(n,
n+3),
| AB |=3-m,| DC |=yD-yC=
n+3-(n2-
n+3)=
n-n2,
| AD |=
=
n,
| AB |=| DC |Þ3-m=
n-n2…j,|AB |=| AD |Þ3-m=
n…k。
解j,k,得n1=0(舍去),或者n2=2,将n=2代入C(n,n2-
n+3),得C(2, 2)。
解析:略
科目:初中数学 来源: 题型:
(本题满分12分,每小题满分各6分)如图(1),在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠ECD=
,AB与CE交于F,ED与AB、BC分别交于M、H.
(1)求证:CF=CH;
(2)如图(2),△ABC不动,将△EDC绕点C旋转到∠BCE=
时,试判断四边形ACDM是什么四边形?并证明你的结论.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2011年初中毕业升学考试(广东深圳卷)数学 题型:解答题
(本题满分12分,每小题满分各6分)如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.联结BF、CD、AC.
(1)求证:四边形ABFC是平行四边形;
(2)如
果DE2=BE·CE,求证四边形ABFC是矩形.![]()
查看答案和解析>>
科目:初中数学 来源:2010年高级中等学校招生全国统一考试数学卷(云南曲靖) 题型:解答题
(本题满分12分,每小题6分)
(1) 在如图所示的平面直角坐标系中,先画出△OAB 关于y轴对称的图形,再画出△OAB绕点O旋转180°后得到的图形.
(2)先阅读后作答:我们已经知道,根据几何图形的面积 关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:(2a +b)( a +b) =" 2a2" +3ab +b2,就可以用图22-1的面积关系来说明.![]()
![]()
![]()
① 根据图22-2写出一个等式 ;
② 已知等式:(x +p)(x +q)="x2" + (p +q) x + pq,请你画出一个相应的几何图形加以说明.
查看答案和解析>>
科目:初中数学 来源:2011年初中毕业升学考试(天津卷)数学 题型:解答题
(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy(如图1),一次函数
的图 像与y轴交于点A,点M在正比例函数
的图像上,且MO=MA.二次函数y=x2+bx+c的图像经过点A、M.
(1)求线段AM的长;
(2)求这个二次函数的解析式;
(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图像上,点D在一次函数
的图像上,且四边形ABCD是菱形,求点C的坐标.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com