【题目】如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长度为_____
![]()
【答案】![]()
【解析】
分析题意,如图所示,连接BF,由翻折变换可知,BF⊥AE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式
可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的长度即可
如图,连接BF.
![]()
∵△AEF是由△ABE沿AE折叠得到的,
∴BF⊥AE,BE=EF.
∵BC=6,点E为BC的中点,
∴BE=EC=EF=3
根据勾股定理有AE
=AB
+BE![]()
代入数据求得AE=5
根据三角形的面积公式![]()
得BH=![]()
即可得BF=
由FE=BE=EC,
可得∠BFC=90°
再由勾股定理有BC
-BF
=CF![]()
代入数据求得CF=
故答案为![]()
科目:初中数学 来源: 题型:
【题目】今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元,已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次采购的数量是第一次采购数量的两倍.
(1)试问去年每吨大蒜的平均价格是多少元?
(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.为出口需要,所有采购的大蒜必须在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半.为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系
中,横坐标为a的点 A在反比例函数
的图象上,点
与点
关于点
对称,一次函数
的图象经过点![]()
(1)设
,点
(4,2)在函数
,
的图像上.
①分别求函数
,
的表达式;
②直接写出使
成立的
的范围;
(2)如图①,设函数
,
的图像相交于点
,点
的横坐标为
,△
的面积为16,求
的值;
(3)设
,如图②,过点
作
轴,与函数
的图像相交于点
,以
为一边向右侧作正方形
,试说明函数
的图像与线段
的交点
一定在函数
的图像上.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】1955年,印度数学家卡普耶卡(
)研究了对四位自然数的一种变换:任给出四位数
,用
的四个数字由大到小重新排列成一个四位数
,再减去它的反序数
(即将
的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数
,然后继续对
重复上述变换,得数
,…,如此进行下去,卡普耶卡发现,无论
是多大的四位数,只要四个数字不全相同,最多进行
次上述变换,就会出现变换前后相同的四位数
,这个数称为
变换的核.则四位数9631的
变换的核为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AB=2,BC=1,运点P从点B出发,沿路线B
C
D作匀速运动,那么△ABP的面积
与点P运动的路程之间的函数图象大致是( ).
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店经营甲、乙两种商品,其进价和售价如下表:
甲 | 乙 | |
进价(元/件) | 15 | 35 |
售价(元/件) | 20 | 45 |
已知该商店购进了甲、乙两种商品共160件.
(1)若商店在销售完这批商品后要获利1000元,则应分别购进甲、乙两种商品各多少件?
(2)若商店的投入资金少于4300元,且要在售完这批商品后获利不少于1250元,则共有几种购货的方案?其中,哪种购货方案获得的利润最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:
在△ABC中,AB=9,AC=5,求BC边上的中线AD的取值范围。
小明在组内经过合作交流,得到了如下的解决方法(如图1):
①延长AD到Q,使得DQ=AD;
②再连接BQ,把AB、AC、2AD集中在△ABQ中;
③利用三角形的三边关系可得4<AQ<14,则AD的取值范围是_____________。
感悟:解题时,条件中若出现“中点”“中线”等条件,可以考虑倍长中线,构造全等三角形,把分散的己知条件和所求证的结论集中到同一个三角形中。
(2)请你写出图1中AC与BQ的位置关系并证明。
(3)思考:已知,如图2,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠FAC=90°。试探究线段AD与EF的数量和位置关系并加以证明。
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com